대형 싱크홀 재난 현장 조사용 3차원 형상화 장비 구현

Fabrication of Three-Dimensional Scanning System for Inspection of Massive Sinkhole Disaster Sites

김 수 로 $^1 \cdot \mathfrak{E}$ 호 근 $^2 \cdot$ 김 상 욱 † Soolo Kim¹, Ho-Geun Yoon², Sang-Wook Kim †

Abstract: Recently, interest in ground subsidence in urban areas has increased after a large sinkhole occurred near the high-story building area in Jamsil, Seoul, Korea, in 2014. If a massive sinkhole occurs in an urban area, it is crucial to assess its risk rapidly. Access to humans for on-site safety diagnosis may be difficult because of the additional risk of collapse in the disaster area. Generally, inspection using drones equipped with high-speed lidar sensors can be utilized. However, if the sinkhole is created vertically to a depth of 100 m, similar to the sinkhole in Guatemala, the drone cannot be applied because of the wireless communication limit and turbulence inside the sinkhole. In this study, a three-dimensional (3D) scanning system was fabricated and operated using a towed cable in a massive vertical sinkhole to a depth of 200 m. A high-speed lidar sensor was used to obtain a continuous cross-sectional shape at a certain depth. An inertial-measuring unit was applied to compensate for the error owing to the rotation and pendulum movement of the measuring unit. A reconstruction algorithm, including the compensation scheme, was developed. In a vertical hole with a depth of 180 m in the mining area, the fabricated system was applied to scan 0–165 m depth. The reconstructed shape was depicted in a 3D graph.

Keywords: Lidar, 3D Scanning System, Safety Inspection, Sinkhole

1.서 론

2014년 고층 빌딩이 건축중인 석촌 호수 주변 발생한 갑작 스러운 지반 침하 때문에 주변 주민들의 공포감이 극대화되었 고 정부에서도 이러한 지반 침하를 국가 재난으로써 인식하게 되어 지하 안전 관리에 관한 특별법이 제정되어 시행되고 있 다¹¹. 이러한 지반 침하중 규모가 크고 수직으로 생성되는 현 상을 싱크홀이라고 부르는데, [Fig. 1]과 같이 2007년 과테말 라에서 발생한 지름 20 m이고 깊이가 100 m 인 싱크홀이 도심 지에 한복판에서 발생하여 싱크홀 사고의 대표적인 사례가 되 고 있다¹². 이러한 싱크홀이 발생한 지역의 위험도를 판단하기

위해서는 싱크홀의 크기와 규모, 그리고 특히 어느 방향으로 추가 붕괴가 더 발생할 위험 요소가 있는지 확인하는 것이 가 장 중요하다. 이러한 조사를 위해 가장 효과적인 방법은 인 력을 투입하여 정밀 조사를 수행하는 방법이나, 지반이 약해 추가 붕괴가 일어날 확률이 높아 인력투입이나 장비 투입이 원할하지 못하여 보다 효과이고 안정적인 방법이 요구된다. 적용할 수 있는 가장 효과적인 방법은 고속 Lidar 센서가 장착 된 드론을 현장에 투입하여 조사하는 방법이다⁽³⁾. 이러한 지 반 침하 현장에 고속 Lidar를 장착한 드론을 이용한 사례로는 지반침하가 일어나거나 일어날 것으로 예측되는 현장 주변을 비행하면서 지면을 스캐닝 하여 침하된 상황을 지리학적으로 맵핑을 통하여 피해정도를 추정하고 상태변화를 모니터링 하 는데 주로 적용되었다[47]. 이러한 드론을 이용한 방법을 100 m 깊이의 수직공 내부로 투입하여 조사를 하기 위해서는 조 사해야 할 범위가 깊어 무선 신호가 도달하지 않아 원격 조정 이 이루어 지지 않으며, GPS 신호도 도달하지 않아 정확한 위치 결정이 어려워 자가 독립 비행도 힘든 상황이다. 아울러 수직

Received : Nov. 26. 2019; Revised : Mar. 3. 2020; Accepted : Aug. 21. 2020 * This project was funded by Mine Reclamation Corporation (Mireco), and is currently supported by the publication grant

^{1.} Principal Researcher, Mireco, Wonju, Korea (kimsoolo@mireco.or.kr)

Principal Researcher, Isung Co. Ltd., Siheung, Gyeonggi, Korea (appletree@isung.com)

[†] Chief Researcher, Corresponding author: Isung Co. Ltd., Siheung, Gyeonggi, Korea (swkim@isung.com)

[Fig. 1] Massive sinkhole disaster in urban area, Guatemala, 2007^[2]

[Fig. 2] Sinkhole inspection diagram using high speed lidar by means of cable that is wound on a cable reel winch

공내에서 발생하는 심한 기류변화때문에 안정적인 비행환경 을 갖추기 어렵다.

아울러 지하수가 가득 채워진 싱크홀^[8]이나 수중동굴^{19]}에 대해서 자가 항법 장치를 갖춘 수중드론을 이용하여 싱크홀 내부의 화학적인 조사와 Stereo Visoion을 활용하여 수중 동굴 에 대해 적용한 사례가 있으나 물이 없는 대형 싱크홀 재난 현 장에서 적용하기가 어려운 실정이다.

이러한 드론의 한계를 극복하고 위험한 지반침하 지역에서 조사하기 위하여 반경이 작은 시추공을 통해 케이블을 통하여 투입하여 조사할 수 있는 장비가 개발되었다¹⁰. 이러한 장비 는 2축 자유도의 관절을 갖고 있는 센서부에 카메라와 Laser 센서 및 소나 센서를 장착하여 관절 제어를 통해 3차원 형상을 스캐닝 할 수 있어 지하 내부의 공간을 조사하는 데에 매우 효 과적인 방법이다^[8]. 하지만 이러한 측정장비는 관절을 제어하 는 형태이기 때문에 한 측정점에서 측정가능한 비교적 제한된 공간에 대한 조사에는 매우 유리하지만 탐사속도가 느려 100 m 정도의 대형 싱크홀 재난 현장에 적용하기에는 전구간을 조 사하는데 10일 이상의 시간이 소요되어 매우 비효율적이다.

본 논문에서는 [Fig. 2]와 같이 고속Lidar센서를 케이블을 통해 수직공 내부로 투입하여 상승시키면서 지상에서 3차원 형상 결과를 실시간으로 확인할 수 있는 3차원 형상화 시스템 을 구현하였다. 고속Lidar센서 값을 수집하고 자세제어를 위 한 하드웨어 구현 내용을 2장에 설명하고, 케이블 견인에 의해 탐사장비가 상하 운동할 때 탐사장비에 회전 현상이 발생하게 된다. 아울러, 싱크홀 하단부와 지표면과의 온도차이와 기압 차이 때문에 상승기류가 발생하여 센서가 좌우로 흔들리게 되 는데 이러한 움직임을 반영하여 3차원 형상을 재구성하는 구 현 기법에 대해 3장에서 설명하였다. 마지막으로, 대형 싱크홀 현장과 유사한 수직공이 있는 광산현장에서 구현된 시스템을 적용하여 획득된 형상화 결과에 대해 논하고자 한다.

2. 하드웨어 구현

[Fig. 2]에서 볼 수 있듯이 시스템은 크게 케이블 원치와 지 상제어기 그리고 PC로 구성되는 지상부와 케이블에 연결되어 싱크홀 내부로 투입되는 탐지장비부로 구분된다. [Fig. 3]에 각 구성부의 세부 구성품을 나타내었다.

2.1 지상제어부 구현

지상제어기의 가장 중요한 부분은 탐지장비부로 전원을 공 급하는 전원 제어부와 탐지 장비부에서 측정되는 센서 및 영 상 정보를 PC로 전송하기 위해 Ethernet으로 변환시키기 위한 영상수신부와 통신제어부로 구성된다. 탐사장비를 최대 200 m 깊이까지 운영하기 위해서는 케이블 길이가 200 m 이상되 어야 한다. 케이블의 길이가 길어지면 도선 저항이 증가하여 전원 공급시 전류량에 따라 전압 강하현상이 발생하게 된다. 이러한 현상을 최소화 하기 위하여 일반적으로 지상부에서 고 전압을 인가해줘서 전류량을 최소화 하고 이에 따른 전압 강 하도 최소화 시켜 사용하게 된다. 본 시스템에서는 192V의 전 압을 지상에서 인가해 주었다. 탐사장비의 무게를 견디면서 아울러 케이블이 전개 되었을때 케이블자체 무게도 견뎌야 하기 때문에 일반 케이블은 적용이 불가능 하여 보통 인장력 이 강한 2중 장복 철선 케이블이 사용된다. 2중 장복 철선 케이 블은 2중으로 되어 있는 견인용 강철 와이어 내부에 전선이 내장되어 있는 케이블로서 Rochester사의 A240185 모델이사 용되었다. 영상수신부는 아날로그 비디오 신호인 CVBS 신호 를 H.264로 인코딩해서 TCP데이터로 변환해 주는 Vivotek

[Fig. 3] System diagram of Sinkhole Scanning System

사 VS8100 모델이 사용되었다. 200 m 케이블을 통해 데이터 전송을 위해서는 RS485신호 체계를 사용하였다. 케이블은 케 이블럴에 감겨 있으며 모터로 구동하여 상승과 하강 운동을 할 수 있도록 제작되었다. 이 때 케이블 인출된 양을 측정하기 위하여 로터리 엔코더를 적용하여 이동거리를 산출하여 지상 제어기를 통해 PC로 전송된다.

2.2 탐사장비부 구현

탐사장비는 몸통와 헤드로 구성되어 있다. 몸통은 케이블 과 연결되는 부분으로써 회전되는 헤드부의 고정축 역할을 한 다. 몸통부에는 케이블을 통해 공급되는 고전압 전원을 센서 부에서 쓸 수 있는 저전압으로 변환해 주는 전원보드와 RS485 통신과 영상 신호를 지상제어기로 전달하는 I/F회로로 구성되

Heading sensor	Magnetometer	Honeywell HMC5843
	Gyroscope	Invensense ITG-3200
Inclinometer	VTI Tech. SCA100T-200	
Lidar	Slamtec RPLIDAR-A3	
0 00	I serace and the second second	
(a)		
	(9 - #	
(b)		

[Fig. 4] Fabricated sinkhole scanning system: (a) Entire view and (b) Detail view of head part

어 있다. 헤드부는 모터제어에 의해 360도 회전할 수 있는 구 조로 되어 있다. 이러한 회전기능을 구현하기 위해 기어부와 모터 및 모터 제어기로 구성되어 있으며 고정된 몸통부와의 회전하는 센서부를 전기적으로 연결하기 위하여 슬립링이 장 착되어 있다. 센서제어기는 내장된 관성센서 데이터와 고속 Lidar 측정 결과를 수집하여 지상제어기로 전달하기 위한 패킷 을 생성한다. 아울러 PC의 명령에 따라 센서부의 회전 모터를 제어하는 신호를 생성한다. 센서의 자세를 결정하기 위하여 관 성센서로서 [Table 1]에 나열한 것과 같이 센서의 Heading정보 를 얻기 위하여 Honeywell사의 3축 자기장센서인 HMC5843 과 Invensense사의 3축 자이로센서인 ITG-3200이 사용되었다. 그리고 센서의 기울기 정보를 얻기 위한 센서로서 2축 경사센 서가 사용되었다. 마지막으로 단면의 형상을 고속으로 스캔하 는 Lidar장비로는 Slamtec사의 RPLidar-A3모델이 사용되었 다. 최대 25 m까지 측정가능하며 측정속도는 1초에 16K points 를 측정한다. 매 측정시마다 측정되는 각도가 다르기 때문에 1 도 간격으로 360개의 데이터를 획득하기 위해서는 10회전 이 상필요하다. 센서제어기에서 모든 각도 데이터가 획득되는데 걸리는 시간은 0.5초가 소요되어 실제 획득속도는 초당 2회 데 이터가 획득된다. 아울러 필요시 카메라와 조명을 제어하여 원하는 방향의 영상획득도 가능하도록 제작되었다. 실제 구현 된 탐사장비를 [Fig. 4]에 나타내었다.

3. 형상화 기법

3.1 형상화 기법 적용을 위한 수치적 모델링

대형 싱크홀을 조사하기 위해서는 [Fig. 5]와 같이 싱크홀의 최하단부로 부터 탐사장비를 상승시키면서 측정이 이루어진다.

[Fig. 5] Scanning scenario of massive sinkhole site

전동으로 구동되는 케이블 윈치를 일정한 속도로 이동시키면 서 일정 깊이 간격마다 데이터를 측정한다. 이때 측정되는 깊 이를 D_0, D_1, \dots, D_m 이라고 할 때 m 번째 깊이에서 결정된 점 들을 $P_m(\phi)$ 라고 하면 $\phi = 0, 1, \dots 359$ 로서 Lidar의 측정각도 에 해당된다.

[Fig. 6]은 관성센서에서 측정되는 센서값과 고속 Lidar 센서 의 측정값으로부터 $P_m(\phi)$ 값을 결정하는 과정을 전 과정을 나타내었다. 측정전에 관성센서의 중심값 $G_{Z, bias}, I_{x, bias}, I_{y, bias}$ 과 보정계수 $S_{x, mag}, S_{y, mag}, S_{z, gyro}$ 를 결정하는 과정을 각각 정 지상태와 회전운동을 통해서 수행한다. 탐사장비를 측정가능 한 최대 심도로 위치 시킨후 상승 이동 시키면서 윈치에 장착 된 엔코더에서 측정되는 거리 D_m와 고속 Lidar 센서의 측정값 $L_m(\phi)$ 으로 형상을 결정하는 점 $P_m(\phi)$ 을 계산한다. 이때 탐 사장비는 케이블 제작시 강선이 2중으로 꼬여서 감겨있는 형 태이므로 수직이동하면서 탐사장비 몸체가 계속 회전하게 되 어 고속 Lidar 센서의 측정 기준값이 회전하게 된다. 이러한 회 전양 $\theta_{rot,m}$ 을 측정하여 자북을 기준으로 보정하는 회전각 보 정과정이 수행된다. 아울러 케이블이 길게 전개되고 싱크홀 내부에서 발생하는 상승기류에 의해 탐사장비가 좌우로 흔들 리게 되는데 기울기 센서로부터 측정된 경사각을 바탕으로 중 심으로부터 흔들리는 정도 dx_m, dy_m, dz_m 를 계산하여 Lidar의 중심점을 보정하는 흔들림 보정과정이 아울러 요구된다. 이처 럼 탐사장비의 자세 변동을 반영해야 보다 정확한 형상을 재 구성할 수 있다. 회전각 보정 방법에 대해 3.2절에서 자세히 설

[Fig. 6] 3D reconstruction algorithm of sinkhole from data measured by IMU and lidar sensors

명하고 흔들림 보정방법은 3.3절에서 설명한다. 마지막으로 3.4절에서는 최종 형상 결정 방법에 대해 자세히 설명한다.

3.2 회전각 보정 방법

회전각은 고속 Lidar센서의 기준점이 자북을 기준으로회전 된 양을 나타내는 각도이다. 이러한 회전각은 관성센서중 Gyro 센서와 자기장센서값을 이용하여 측정된다. [Fig. 7]에 회전각 을 결정하는 과정을 나타내었다.

Gyro 센서와 자기장센서를 통해 회전각을 결정하기 위해서 는 탐사전에 보정하는 과정이 선행되어야 한다. 탐사장비가 투입되기전에 도르레를 통해 매달려 있는 완전 정지 상태에서 Gyro 센서값을 식 (1)과 같이 중심값 *G_{z,bias} 로* 사용한다.

$$G_{z,bias} = G_z(\forall \exists \lambda]) \tag{1}$$

[Fig. 7(a)]와 같이 헤드부분을 1회전시키면서 수집된 Gyro 센서값을 $G_{z,0}, G_{z,1}, G_{z,2}, \dots, G_{z,N-1}$ 라 할 때 Gyro 센서의 회 전각을 구할 수 있는 변환값 $S_{z,gyro}$ 는 다음과 같이 식 (2)를 통 해 결정할 수 있다.

$$S_{z,gyro} = \frac{360}{N \sum_{n=0}^{N-1} G_{z,n}}$$
(2)

[Fig. 7] Algorithm for determining rotation angle: (a) Calibration mode (b) Measurement mode (c) Calculation of rotation angle

회전하는 동안 자기장 센서의 x축 y축 값도 같이 측정하면 서 각축 값의 최대, 최소값을 획득한다. 예를 들어 x축의 최소 값과 최대값을 결정하면 자기장 센서로부터 회전각을 결정하 기 위한 중심값과 변환값은 식 (3)과 (4)와 같이 나타낼 수 있 다. 같은 방법으로 y축의 중심값 M_{y,bias}과 변환값 S_{y,mag}도 결 정할 수 있다.

$$M_{x,bias} = \frac{M_{x,max} + M_{x,min}}{2} \tag{3}$$

$$S_{x,mag} = \frac{2}{M_{x,max} - M_{x,min}} \tag{4}$$

[Fig. 7(b)]와 같이 측정하면서 회전각은 자북을 기준으로 $\theta_{rot,m}$ 로 정의하였다. 우선 자기장센서를 이용해 회전각을 결정하기 위해서는 중심값과 변환값을 적용하여 센서값을 식(5)를 통해 $M_{x,m}', M_{y,m}'$ 로 보정하게 된다.

$$\begin{split} M_{x,m}^{'} &= S_{x,mag} (M_{x,m} - M_{x,bias}) \\ M_{y,m}^{'} &= S_{y,mag} (M_{y,m} - M_{y,bias}) \end{split}$$
 (5)

보정된 자기장 센서값을 이용하여 결정된 자기장 회전각 $\theta_{maa,m}$ 과 자기장의 세기 M_n 은 식 (6)과 (7)에 의해 결정된다.

$$\theta_{mag,m} = \tan^{-1} \frac{M_{x,m'}}{M_{y,m'}} \tag{6}$$

$$|M_n| = \sqrt{M_{x,n}^{'^2} + M_{y,n}^{'^2}}$$
(7)

이 때 Gyro센서로부터 회전각을 결정하는 방법은 식 (8)과 같다. 초기값은 자기장센서에서 결정된 값이 사용되며 단위거 리당 회전 변화량을 결정하여 누적된 값이 사용된다.

$$\theta_{gyro,0} = \theta_{mag,0}$$

$$\theta_{gyro,m} = \theta_{gyro,m-1} + G_{z,m} S_{z,g}$$

$$(8)$$

탐사과정중에 금속이나 자성체 주위를 지나갈 경우 자기장 센서의 값은 급변하게 된다. 이러한 급변정도는 자기장 세기가 1보다 커질 때 자기장이 급변했다는 것을 나타내게 된다. 이러 한 점을 이용하여 최종 *θ_{rot.m}*은 식 (9)와 같이 나타낼 수 있다.

$$\theta_{rot,n} = \begin{cases} \theta_{mag n, |M_n| \le 1} @ \texttt{IM} \\ \theta_{gyro, n, |M_n| > 1} @ \texttt{IM} \end{cases}$$
(9)

3.3 흔들림 보정 방법

케이블이 전개될수록 탐사장비는 무게추 역할을 하게되어 진자운동을 하게 된다. 특히 싱크홀이 깊이가 100 m이상일 경 우 지표면쪽과 지하내부의 온도와 기압이 다르기 때문에 주로 싱크홀 내부에서부터 지표면쪽으로 상승기류가 발생하여 흔 들림이 발생한다. 이러한 흔들림은 Lidar 센서 측정값의 중심 점 위치가 변경되어 3차원 형상 결정시 오차를 발생시키는 요 소가 된다. 이러한 흔들림 정도 *dx_m*, *dy_m* 는 [Fig. 8]과 같이 경 사계를 이용하여 센서장비가 기울어진 정도 *θ_{x,m}*, *θ_{y,m}를* 통 해 결정할 수 있다.

앞절의 Gyro 센서와 자기장 센서와 같이 기울기 센서도 탐 사전에 정지상태에서 센서 보정을 위한 중심값을 결정해야 한 다. 정지상태에서 측정된 x, y축 측정값을 *I_{x,bias}* 로 사용

[Fig. 8] Algorithm for determining deviation value: (a) Measurement mode (b) Calculation of deviation value

한다. 이때 \mathbf{x} 축 및 \mathbf{y} 축방향으로 기울어진 각도 $\theta_{x,m}, \theta_{y,m}$ 는 식 (10)에 의해 결정된다.

$$\theta_{x,m} = \sin^{-1} \frac{I_{x,m} - I_{x,bias}}{819}$$

$$\theta_{y,m} = \sin^{-1} \frac{I_{y,m} - I_{y,bias}}{819}$$
(10)

여기에서 $I_{x,m}$ 과 $I_{y,m}$ 은 현 측정값을 의미하고 819는 사용된 경사계 SCA100T-200모델의 고유보정계수 값이다.

앞 절에서 결정된 회전각 $\theta_{rot,m}$ 를 이용하여 흔들림에 의한 변화량 $\Delta \overrightarrow{d_m}$ 는 수직으로 D_m 만큼 이동한 탐사장비를 식 (11) 과 같이 $\theta_{x,m}, \theta_{y,m}, \theta_{rot,m}$ 에 의한 연속적인 회전운동으로 계산 할 수 있다.

$$\Delta \overrightarrow{d_m} = R_{z,m} R_{y,m} R_{x,m} \overrightarrow{d_m}$$
(11)

여기에서

$$\begin{split} d_{m}^{-} &= (0 \ 0 \ -D_{m})^{T} \\ \Delta \overrightarrow{d_{m}} &= (dx_{m} \ dy_{m} \ dz_{m})^{T} \\ R_{x,m}^{-} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{x,m} & -\sin \theta_{x,m} \\ 0 & \sin \theta_{x,m} & \cos \theta_{x,m} \end{bmatrix} \\ R_{y,m}^{-} &= \begin{bmatrix} \cos \theta_{y,m} & 0 \ \sin \theta_{y,m} \\ 0 & 1 & 0 \\ -\sin \theta_{y,m} & 0 \ \cos \theta_{y,m} \end{bmatrix} \\ R_{z,m}^{-} &= \begin{bmatrix} \cos \theta_{rot,m} & \sin \theta_{rot,m} & 0 \\ -\sin \theta_{rot,m} & \cos \theta_{rot,m} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ R_{t,m}^{-} &= \begin{bmatrix} \cos \theta_{rot,m} & \sin \theta_{rot,m} & 0 \\ -\sin \theta_{rot,m} & \cos \theta_{rot,m} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ e_{t}^{-} \\ \end{split}$$

3.4 형상 결정 방법

앞절에서 정의된 회전각 $\theta_{rot,m}$ 과 흔들림 정도 Δd_m 을 고려 하여 단면을 결정하는 과정은 다음과 같다. [Fig. 9]와 같이 m번째 심도 D_m 에서 측정된 데이터를 $L_m(\phi_n)$ 라 할 때 우선 회 전각 $\theta_{rot,m}$ 를 고려하여 자북을 중심으로 보정된 데이터 $L_m'(\phi_n')$ 를 식 (12)를 통해 결정한다.

[Fig. 9] Algorithm for reconstruction of sectional diagram

[Fig. 10] Type of 3D graphic representation: (a) Strip line (b) Mesh (c) Surface

$$L_{m}'(\phi_{n}') = L_{m}(\phi_{n} + \theta_{rot,m})$$

$$(12)$$

이때 싱크홀 벽면의 점 $P_m(\phi_n')$ 을 식 (13)과 같이 정의할 때 식 (14)를 통해 결정할 수 있다.

$$P_m(\phi_n') = [x_n \ y_n \ z_n]^T$$
(13)

$$P_m(\phi_n') = L_m'(\phi_n') \begin{bmatrix} \sin(\phi_n') \\ \cos(\phi_n') \\ 0 \end{bmatrix} + \Delta \overrightarrow{d_m}$$
(14)

일정한 깊이 간격으로 획득되는 단면 점들은 [Fig. 10(a)]와 같이 strip line이 적충된 형태로 구성된다. 이러한 점들점부터 면을 구성하기 위해서는 (b)와 같이 2 단면점들을 3각형 mesh 로 만들어 표현하게 되고 (c)와 같이 면을 구성할 수 있다.

4. 현장 실험

국내에 대형 싱크홀 재난현장이 존재하지 않기 때문에 이 와 가장 유사한 형태의 수직공이 있는 청평 규석 광산현장에 서 [Fig. 11]과 같이 실험이 진행되었다. [Fig. 12(a)]는 수직공 입구 주변의 전경을 보여준다. 산 정상부에서 채취된 광석을 지면까지 이동시키기 위해 지름 6 m, 깊이 180 m의 우물형태 의 수직공이 건설되었다. 오랜기간 광석들을 지면으로 자유낙 하 시키면서 벽면에 충돌에 의한 손상이 발생하고 중간부분의 벽면이 조금씩 박리되어 규모가 확장되고 있어 내부의 손상정 도를 전혀 확인 할 수 없는 공간이었다. (b)와 같이 탐사장비를 케이블과 연결하여 관성센서의 보정과정을 수행한 후(c)와 같 이 수직공의 중심부분으로 탐사장비를 투입하였다. 탐사깊이 는 165 m 지점까지 수행하였으며 전동 윈치를 구동하여 탐사 장비가 6 m/min으로 이동하며 스캔을 수행하였다. 165 m 전체 구간에 대한 탐사결과를 획득하는데 약 20분정도 소요되었다. 탐사를 통하여 3차원으로 재구성된 결과를 [Fig. 12]에 나타 내었다. 0~165 m구간까지 전체 구간에 대한 결과를 (a)에 나타 내었다. 수직공의 용도는 광산의 정상 부분에서 채취된 암석 을 수직공을 통해 산아래 위치한 선별장까지 자유낙하시켜 이 동시키기 위한 용도이기 때문에 거대한 암석들이 투입과정에 서 벽면을 치면서 낙하가 이루어진다. 이러한 작업 특성상 0~50 m구간을 자세히 나타낸 결과 (b)에서 볼 수 있듯이 투입 이 이루어지는 방향 반대쪽인 남동방향으로 지하 5 m지점부 터 파손이 이루어짐을 볼 수 있다. 특히 암석들이 벽면을 부딪 히면서 낙하하기 때문에 25 m지점부분부터는 파손정도가 심 하게 나타나 단면형상이 전방향으로 급속도로 확장해 가고 있

[Fig. 11] Experiment at the vertical hole of mining site: (a) Entire view (b) Calibration of IMU sensor (c) Entrance of vertical hole

[Fig. 12] 3D reconstruction results: (a) Entire result(0~165 m) (b) 0~50 m (c) 50~100 m (d)100~150 m

음을 알 수 있다. 가장 심하게 파손되어 확장된 구간은 결과 (c) 에서 볼 수 있듯이 50~100 m 구간으로서 최대 지름이 11 m까

지 확대된 것을 확인할 수 있다. 이러한 확장구간은 결과(d)와 같이 110 m깊이까지 진행되었다가 다시 지름 6~7 m 이내로 축소되어 광산 하단부에 있는 선별장까지 연결되어 있음을 확 인할 수 있었다. 스캔결과를 바탕으로 전체구간에 대한 체적 을 계산한 결과는 3703.43018 m³으로 산출되었다. 특히 광석 이 투입되면서 파손이 가장 심하게 이루어 지고 있는 방향은 남동방향으로 확인되었다. 아울러 회전보정을 수행하였지만 관성 센서중 자기장센서에 적용된 Kalman 필터의 반응속도가 실제회전속도를 추적하기에 약간 느리게 적용되어 하단부에 는 약간 회오리와 같은 형태가 나타난 것으로 보인다.

5.결 론

광산현장에 적용된 고속 Lidar의 측정을 통해 20분 이내에 165 m를 구간에 대한 자세한 형상 정보를 현장에서 측정과 동 시에 얻을 수 있었다. 3차원으로 형상화된 결과를 통해 공의 붕괴 진행방향과 최대 붕괴가 많이 이루어진 곳의 범위 및 부 피 등을 정확한 수치로 확보할 수 있어 추가 붕괴우려가 있는 재난현장에서 매우 유용할 것으로 보인다. 실제 인력이 투입 없이 케이블을 통해 탐사장비만 투입하면 되기 때문에 운용비 용도 매우 저렴하여 기존 지하 시설물들의 유지보수 관리에도 적용할 수 있으며, 아울러 이상이 발견된 지점은 주기적인 측 정을 통해 시간 변화에 따른 파손 진행 상황을 모니터링 할 수 있어 추가적인 사고예방에도 큰 도움을 줄 수 있을 것으로 기 대된다.

본문에서 나타낸 바와 같이 정확한 형상을 모델링 하기 위 해서는 센서의 회전과 움직임을 정확히 반영하여 보정하는 기 술이 필요하다. 그러나 절대적인 기준값 없이 IMU센서로부터 측정점의 정확한 위치를 결정하는 것은 매우 어려운 기술이어 서 정확한 형상을 모델링하는 데에는 한계가 있다. 이러한 한 계를 극복하기 위하여 추가적인 후처리 보정 기법에 대한 연 구가 필요하다. 일정한 높이 간격으로 연속적인 데이터 획득 이 이루어 지기 때문에 가까운 데이터들의 상관관계를 적용한 다면 보다 정밀한 형상을 획득할 수 있을 것으로 기대된다. 아 울러 최근에 많이 적용되고 있는 다채널 고속 Lidar시스템을 적용하여 측정데이터 마다 중첩구간을 두어 중첩된 영역에서 보정과정을 수행한다면 매우 정밀한 형상을 재구성할 수 있을 것으로 기대된다. 또한 360° 파노라마 영상정보를 텍스쳐 형 태로 적용하여 VR기술을 적용한다면 보다 현실적인 결과를 획득할 수 있을 것으로 기대된다.

References

- C. Y. Kim, J. H. Jeong, C. H. Choi, and W. K. Yu, "Ground subsidence (sinkhole) occurrence cause and technology and directions for policy response," *Construction technology*, 2015, [Online]: http://www.ssyenc.com/file/kor/tech/html/2015fi/ 7.% 20SP2.pdf.
- [2] Guatemala Sinkhole Created by Humans, Not Nature, National Geographic, [Online], Available: https://www.national geographic. com/news/2010/6/100603-science-guatemala-sinkhole-2010-hu mans-caused.html, Accessed: Nov. 15, 2019.
- [3] E. J. Lee, S. Y. Shin, B. C. Ko, and C. Chang, "Early sinkhole detection using a dron-based thermal camera and image processing," *Infrared Physics & Technology*, pp. 223-232, Sept., 2016, DOI: 10.1016/j. infrared.2016.08.009.
- [4] Z. Motyka and B. P. Jelle, "System model for spatial mapping anthropogenic sinkholes and subsidence basins in mining areas applying 2D laser scanner technique," 5th Int. Sci. Conf. on Civil Engineering-Infrastructure-Mining, Krakow, Poland, vol. 106, 2019, DOI: 10.1051/e3sconf/201910601007.
- [5] M. Kobal, I. Bertoncelj, F Pirotti, and L. Kutnar, "Lidar processing for defining sinkhole characteristics under dense forest cover: A case study in the Dinaric mountains," *Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.*, pp.113-118, 2014, DOI: 10.5194/isprsarchives-XL-7-113-2014.
- [6] M. Kobal, I. Bertoncelj, F. Pirotti, I. Dakskobler, and L. Kutnar, "Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover–Case study of a high karst area in the Dinaric mountains," *PLOS ONE*, 2015, DOI: 10.1371/journal.pone.0122070.
- [7] F. N. Tibouo, "Use and evaluation of LiDAR for mapping sinkholes in Royal Spring groundwater basin," M.S Thesis, U. of Kentucky, Lexington, USA, 2016, DOI: 10.13023/ETD.2016.211.
- [8] J. W. Sahl, M. O. Gary, J. K. Harris, and J. R. Spear, "A comparative molecular analysis of water-filled limestone sinkholes in north-eastern Mexico," *Environmental Microbiology*, vol. 13, no. 1, pp. 226-240, 2011, DOI: 10.1111/j.1462-2920.2010.02324.x.
- [9] N. Weidner, S. Rahman, A. Quatrini, and I. Rekleitis, "Underwater cave mapping using stereo vision," 2017 IEEE International Conference on Robotics and Automation, Singapore, Singapore, pp. 5709-5715, 2017, DOI: 10.1109/ICRA.2017.7989672.
- [10] S. G. Yu, I. J. Yang, Y. S. Shim, S. W. Kim, and H. G. Yoon, "Apparatus for 3D scanning underground cavity," Korea Patent 10-2015-00049207, May, 8, 2015.

김 수 로 2001 조선대학교 자원공학과(학사) 2003 조선대학교 자원공학과(석사) 2007 기술사(지질및 지반) 2008~현재 한국광해관리공단 기술연구소 차장

관심분야: 3D Scanning System, Field survey, Sensor

김 상 욱 1993 경희대학교 전자공학과(공학사) 1995 경희대학교 전자공학과(공학석사) 2011 서울대학교 전기, 컴퓨터공학부 (공학박사) 2003~현재 이성주식회사 기술연구소 소장

관심분야: Radar, 3D Scanning System, Land mine detection

윤 호 근

2008 한국산업기술대학교 전자공학과(학사) 2012 한국산업기술대학교 전자공학과(석사) 2011~현재 이성주식회사 기술연구소 책임 연구원

관심분야: Radar, 3D Scanning System, Land mine detection