
1. Introduction

Experimental setup to train an autonomous shuttle vehicle in a 

real physical world will be extremely troublesome. Since there 

are a lot of scientific parameters ought to be considered to make a 

training and test situation[1]. Moreover, the expense and the strategic 

troubles in case of the real-world experimental training is also a 

hindrance[2]. To able to learn properly, a machine needs to collect 

and train a large number of parameters in the model. In that case, 

the requirements of large data arise. Using a single vehicle, it is 

impossible to perform all the event needed to train a vehicle 

perfectly and gather data for those situations. Thus, alternate 

planning is badly needed where a virtual world can perform the 

continuous experiment of training a vehicle for autonomous car 

research. The simulator also gives an inherently safe environment 

for driving research[3]. There is no endangerment to the driver or 

other vehicle users or pedestrians in case of the simulator. However, 

training autonomous driving vehicle with reinforcement learning 

in the real environment involves non-affordable trial-and-error. 

It is more desirable to train in a virtual environment initially and 

then transfers to the real environment[4]. A brief survey about the 
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existing open-source vehicle simulators available online was 

presented in[5] where an efficient virtual simulating environment, 

CAIAS simulator for the self-driving car by utilizing the Unity 

real-engine was introduced, but there is no detailed description 

about specific deep-learning based training methods. 

This paper extends the previous work done in a previous 

paper[5] by adding more hostile and realistic environments and 

implementing an end-to-end deep learning method to teach a 

self-driving car for controlling the motion of the vehicle.

In this paper, three major contributions will be highlighted. 

First, we discuss open-source simulators and their features. All 

the features in those simulators are explained in details and key 

factors that are necessary for training autonomous vehicle with 

application to deep learning methods are discussed. Second, we 

propose a new effective approach to make a virtual simulation 

environment suitable for teaching deep learning based agents 

which control the motion of a self-driving car. Specially, we 

developed a synthetic virtual simulator by using the real-engine 

from Unity which could reflect various realistic situations and 

weather conditions, making the autonomous vehicles to learn 

and understand more realistic situations and some unexpected 

events. Finally, we verify the effectiveness of the developed 

simulator by implementing an end-to-end CNN algorithm[6] for 

training a self-driving shuttle. 

The remainder of the section is organized as follows. Section 

2 provides an overview of the current open-source simulators 

used for self-driving car researches. In Section 3, an autonomous 

vehicle simulating environment for training the self-driving car 

is presented. Section 4 describes the detailed implementation of 

an end-to-end CNN based decision-making agent. Section 5 

shows the verification of the performance of the proposed method.

2. Open-Source Simulators

There are many open-source vehicle simulators available 

these days, and each was built for a specific purpose and test. An 

overview of the simulators is represented below. 

2.1 GAZEBO

The simulator is basically used for robot simulation. It is a 

well-designed simulator for rapidly test algorithms, design 

robots and train AI system using realistic scenarios. The Gazebo 

simulator offers the ability to accurately and efficiently simulate 

populations of robots in complex indoor and outdoor environ-

ments[7,8]. But, the problem is that the user needs to prepare the 

whole virtual world before training. Moreover, it is very hard to 

produce a dynamic 3D world in Gazebo[9].

2.2 TORCS

TORCS (The Open Racing Car Simulator)[10] is an open-source 

3D car racing simulator which provides a realistic physical 

racing environment with a set of highly customizable API[10]. 

TORCS allows both automatic features for AI drivers and 

manual driving features using keyboard, mouse and wheel. But it 

is not so feasible to train an RL model in this environment since it 

does not provide proper visual API.

2.3 CARLA

An open-source simulator for autonomous driving research, 

CARLA[11] provides the development, training, and validation of 

autonomous urban driving systems. CARLA also provides open 

digital assets (urban layouts, buildings, vehicles) that were 

created for this purpose of dynamic real-life situations. The 

simulation platform supports flexible specification of sensor 

suites and environmental conditions[11].

2.4 AirSim

AirSim[12] simulator is an open-source, cross-platform for 

drone and car both, and supports physically and visually realistic 

simulations. It is developed as an Unreal plugin that can simply 

be dropped into any Unreal environment as well as unity 

environment which is developed recently. AirSim platform is 

arranged for AI research to experiment with deep learning, 

computer vision and reinforcement learning algorithms. It is 

possible to retrieve data and control vehicles in a platform 

independent way from the API[12].

3. Autonomous Vehicle Simulator

Unity is used to build a virtual simulating environment for 

training autonomous vehicles. This vehicle simulator is modified 

version of Udacity simulator[13]. Since Unity has a good user 
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interface and powerful interactive design module, this integrated 

platform is best for creating 3D simulator or other interactive 

contents such as virtual reconstructions or 3D animations in real 

time[14]. To design the simulation environment and for training 

purpose, we used a hardware system which consists of Intel Core 

i7 CPU, 64 GB RAM and GTX 1080 GPU.

3.1 The process of importing Shuttle cart in Unity

An autonomous vehicle for training purpose is designed using 

Both SolidWorks and Blender software as a prototype of the real 

shuttle vehicle shown in [Fig. 1] and then is converted to fbx file 

and later imported environment. The server-client connection is 

initiated in the simulation environment using Socket. This 

SocketIO initiates the communication between the agent and the 

algorithm. Agent vehicle and environment work as a server and 

the model algorithm for training which works as a client. The 

simulator is made compatible for common operating systems like 

Windows, Linux and Mac OS with both 32-bit and 64-bit. 

3.2 Environments Numbers

Two distinctive worlds with two different tracks, situations 

and weather are provided. One of the environment track is a 

forest environment. Here, the road is used in a loop, because in 

real life most of the time, a shuttle car is used in campus premises 

in a loop path. The same environment but different path track is 

used to verify the performance after training the model in the 

training path. Different path scenarios is a way to authentic that 

the simulator result can easily be transferred to the real physical 

world since the test ground path is totally different for the 

training path. Forest environment contains critical path turning, 

step slop, bumpy road condition, broken roads, sunny and 

gloomy weather. Sunny weather for training shown in [Fig. 2(a)] 

and gloomy or raining weather for the test shown in [Fig. 2(b)].

The user can choose preferable tracks to train the model. For 

training, path design, color is different [Fig. 2(a)] and the 

weather condition is sunny. For the test, road color and weather 

will be gloomy like [Fig. 2(b)]. The reason for converting one 

real-life scenario to convert to a virtual environment is to check 

and test some algorithm which can imitate the behavior from the 

image. So, having one scenario as like real life will give the 

advantage to evaluate those algorithms as well. Another track is 

randomly designed just to check all the steering angles and 

[Fig. 1] Blender and SolidWorks software both are used to 

design the prototype vehicle. (a) Top View (b) Isometric View 

(c) Front View (d) Side View

(a)

(b)

[Fig. 2] The forest environment for Train (a) and Test (b)
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speeds of the agent car produced during the simulation. This 

environment contains the countryside road, trees, random 

obstacles, grasses and driving lanes. 

The environment is constructed using different critical 

conditions and scenarios to make the model from training more 

well-efficient. The simulator contains another campus rural map 

shown in [Fig. 3] & [Fig. 4] in which we tried to develop one 

environment mimics with the campus environment. Skybox used 

to make the environment look more realistic which is a wrapper 

around your entire scene that shows what the world looks like 

beyond your geometry[15].

3.3. Weather Conditions and Different Road Layout

The tracks both contain rainy, hailing, fog, snowy, dry 

weather with both day and night time feature. To check further 

performance road layout and the color is changed. 

To make it more realistic closely related to the physical world, 

some feature like a road bump, broken road, road slop, sun 

reflection in the road are included shown in [Fig. 5] and [Fig 6]. 

[Table 1] show the list of all simulation condition in the simulator.

3.4 Types of Sensors

Three types of sensors configuration are provided in the agent 

vehicle. The user can choose one or multiple sensors to generate 

results according to their model.

3.4.1 RGB Camera

A built-in script in Unity is used for the camera image. A 

camera is a device through which the player views the world like 

a simple camera. Here specifying pixel value is one of the 

[Fig. 3] The second virtual environment on the simulator is the 

depiction of shuttle rail on a campus area

[Fig. 4] The map of the second track of campus rural area

(a) (b)

[Fig. 5] Rainy Weather in the Environments (a) Wet road Forest 

Environment, (b) Campus rural area

(a) (b)

(c) (d)

[Fig. 6] Hailing Weather Condition in the Environments 

(Marked yellow particles are Hail Stone) in (a), Snowy Weather 

Condition in the Environments (b), Foggy Weather Condition 

with less visibility in the Environments (c), Sun Reflection in 

the wet road in (d)

[Table 1] All tracks and Weathers

Environment Weather

Forest Shuttle

Environment

Training Track All

Testing Track
Rainy, Hailing, Foggy, Slippery 

Road, Day & Night

Campus Rural Area (Test) Snow, Foggy, Night
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important things. The single-camera is shown in [Fig. 7(b)] and 

multiple cameras showed in [Fig. 7(a)] is used as a sensor input. 

The idea of three multiple cameras is from behavior learning 

using convolutional network[6].

3.4.2 LiDAR Sensor

LiDAR sensor imitation and obtain the LiDAR data as a form 

of an image by casting each individual laser in the simulator. 

This implementation is intuitive and accurate. For each laser in 

the simulated LiDAR, a raycast is used to detect the distance. In 

the update loop, if the timer exceeds the limit, a list of raycast 

will be a trigger to gather distance information[5,16]. The result of 

all raycast is stored in a depth map image which is shown in [Fig. 

8(b)]. The green image below the picture of the environment is 

the distance matrix correspond to the positions of all the obstacle 

in the environment, depicted in [Fig. 8(a)].

3.4.3 Depth Camera Sensor

A depth or motion vector texture can be generated from 

camera function in unity. This is a minimalistic G-buffer Texture 

that can be used for post-processing effects or to implement 

custom lighting models. Hence, it is usable as an output image 

like [Fig. 9] from the depth camera which produces the layer of 

the depth sensor completely based on the experiment layout[5,16].

3.5 User Interface of Simulator and Operation

The physics of shuttle vehicle is used for the driving simulation 

system is similar to shuttle vehicle dynamics. The functions and 

particle effects in the imported Unity were used to create trees, 

grass, object, and climate shown in [Fig. 5] and [Fig. 6] and 

lighting effects to simulate the real environment. The user can 

choose the favorable track and environment with respect to the 

sensor options. From the car user interference display, car speed 

and the angle are visible. The user can obtain the steering angle 

and speed during the training mode by using socket communication.

4. End-To-End CNN based Self-Driving

In this section, we will discuss the algorithms we used to 

verify the performance of the simulator. Also, the procedures for 

training a vehicle will be thoroughly described for algorithms 

like behavior learning[6,17] in this section. The methodology 

displays an end-to-end convolutional neural network (CNN)[6], 

trained with labeled data (steering angle, obstacles, roads, lanes) 

on different street conditions to avoid obstacles and autonomous 

navigation in an obscure condition. It includes image input from 

(a) (b)

[Fig. 7] Multiple camera (Left-Center-Right) train and receive 

data from the environment. (a) And a Single camera to take 

image input for the test (b)

(a)

(b)

[Fig. 8] LiDAR sensor casting ray over different obstacles (a) 

and a depth map of the distance matrix corresponding to the 

positions of all the obstacle in the environment (b)

[Fig. 9] These figures show the output of the RGB camera and 

depth camera simultaneously



유니티 실시간 엔진과 End-to-End CNN 접근법을 이용한 자율주행차 학습환경   127

the simulation environment, image processing and transformation, 

color modification for lanes and array representation of images 

(NumPy array[18]). The labeled data and images are fed into the 

convolutional neural network, which generates a calculated steering 

angle and speed values as output. [Fig. 10] presents a flowchart 

for the steps related to autonomous driving in the methodology.

4.1 Data Collection and Preprocessing

The car is driven manually in simulated roads to gather the 

data. Three cameras (front left, front middle and front right) are 

connected to the car which allows recording the environment 

simultaneously record three other parameters: steering angle, 

speed and throttle synchronized with the recorded images.

Image cropping, Pre-processing[19], Random shadow and brightness 

algorithms are applied. The image segmentation[20] and augmentation 

are applied to increase performance output in the CNN model 

and reduce noise and unimportant features from the image.

4.2 Architecture of CNN Training

The depicted technique structure is a fully-connected convolutional 

neural network which can learn representations from input 

camera images and use it for autonomous driving. The shown 

[Fig. 11] display the end-to-end convolutional neural network 

used for autonomous driving in this work. This architecture is 

similar to the architecture of Nvidia CNN architecture model[6]. 

The network consists of 5 convolutional layers and 3 fully- 

connected layers. The convolutional layers are designed for 

features extraction. First 3 convolutional layers use 2x2 strides 

and next 2 convolutional layers use 1x1 strides. All the convolutional 

layers use 5x5 kernels. Fully-connected layers are designed to 

function as a steering controller which generate the steering 

control value output. [Table 2] presents a summary for the network 

with layers, kernel size, strides, number of filters (convolutional 

layers) and the number of neurons (fully-connected layers).

The CNN is trained with the weights to minimize the mean 

square error between predicted steering command and either 

steering commands from the human driver or the adjusted 

steering for off-center and rotated images. 

The reordered data from the simulation environment (record 

image) is labeled with road-type and driver's behavior (turning, 

lane switching, lane following, brake, etc.). Data is preprocessed 

[Fig. 10] Step by Step Process of training and testing of Behavioral 

Cloning

[Table 2] Behavioral learning configurations for Layers, Filters, Kernels, Strides and Neurons

Convolution Layer 1 : 5x5 Filter : 24 Stride : 2x2 Activation: ELU (Exponential Linear Unit)

Convolution Layer 2 : 5x5 Filter : 36 Stride : 2x2 Activation: ELU (Exponential Linear Unit)

Convolution Layer 3: 5x5 Filter : 48 Stride : 2x2 Activation: ELU (Exponential Linear Unit)

Convolution Layer 4: 3x3 Filter : 64 Stride : 1x1 Activation: ELU (Exponential Linear Unit)

Convolution Layer 5: 3x3 Filter : 64 Stride : 1x1 Activation: ELU (Exponential Linear Unit)

Fully Connected 1 Neuron : 100 Activation: ELU (Exponential Linear Unit)

Fully Connected 2 Neuron : 50 Activation: ELU (Exponential Linear Unit)

Fully Connected 3 Neuron : 10 Activation: ELU (Exponential Linear Unit)

Fully Connected Neuron : 1 (Output) Activation: ELU (Exponential Linear Unit)

[Fig. 11] Fully Connected CNN Architecture
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and fed into the network for training with their corresponding 

labels. [Fig.12] illustrates the data collection and training for 

autonomous driving using end-to-end CNN. 

5. Results

Convolutional Neural Network training is dependent on how 

it sees the images. Keras helps to visualize the CNN layers 

output[21] and to understand how an input image is processed 

inside the network. Following output in [Fig. 13] is generated on 

an image input by the CNN network. Keras feature map 

generates all the plots for the convolutional layer. From 

convolutional layer 1 & 2, the model can get features like edges, 

curves and lines. The features in convolutional layer 3 & 4 are a 

higher level of complex feature which is learned from previous 

output.

The network is trained with 10 epochs and 20000 samples per 

epochs. The learning rate for the network is in exponential form, 

  = 0.0001 and, a batch size of 40 is applied. The training loss 

and validation loss is calculated and visualized in run-time using 

Keras. History can be tracked in Keras while training is going on. 

Later, it is possible to use those data to plot the graph using matplotlib 

python library. [Fig. 14] presents the training accuracy and 

training loss and validation loss respectively. Since the loss of 

both training and validation reduced systematically, it can be 

said that the model is not over-fitted. [Fig. 15] plot shows the 

model loss after 200000 batches. As the training proceed, the 

model loss reduced. It indicates the model got better with more 

training data.

[Table 3] reports the number of times vehicle effectively 

finished test condition under two distinct scene and two different 

[Fig. 12] Training Strategy using behavior learning

(a) (b)

(c) (d)

[Fig. 13] CNN Layer Output Visualization (a) Conv. 1 (b) 

Conv.2 (c) Conv.3 (d) Conv.4

[Fig. 14] The training loss after 10th Epoch 

[Fig. 15] The training loss after 200000 batches

[Table 3] Qualitative Evaluation of performance

Scenarios
Behavior Learning

Forest Shuttle Track (Rain) Campus Track (Night & Snow)

Straight 20 20

Left Turn 20 16

Right Turn 20 16

Hard Left 18 17

Hard Right 17 17

Bumpy Road 17 18

Obstacle Avoid 16 12
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weather using the same model generated after training. The 

quantitative evaluation is performed in both tracks. One of them 

is Forest shuttle track in rainy weather another of them is campus 

track during the night and snowy weather. We have executed 

each of the conditions mentioned in [Table 3] 20 times using our 

trained model on the mentioned scenarios and collected the 

number of times it succeeded. Though the result may vary with a 

different model of the dataset. Since a good amount of dataset 

will help to generate a perfect model. In general, the execution of 

all strategies is working properly and the achievement rate is 

good. The test results from the performance verify the efficacy of 

the simulator. From the result, it was evident that end-to-end 

CNN works efficiently in a similar environment it was trained. 

Validating the model in a different environment gives less 

success rate in case of behavioral cloning method. So, it is 

worthwhile to implement behavioral cloning in shuttle car since 

there is less change in a feature of a shuttle car and its 

environment.

6. Conclusion

In this study, we discussed about various simulators and their 

supporting API. One of the main reason to choose this simulator 

and train especially for behavioral cloning is the data generation 

for various environment and weather is quite easier in this 

simulator. Recording data for training using three camera sensor 

is a key feature to train using Nvidia end-to-end CNN behavioral 

cloning model. Also, the socket interface made the communication 

easier between the code and simulator. We discussed the 

development process of a dynamic simulator which has two 

different worlds consisting of different weather condition and 

situations. The dataset from the synthetic environment made the 

model more robust for shuttle car environment. Since it is kind of 

supervised learning, the dataset from the diverse environment 

and weather can boost up the accuracy of the steering angle of 

the model. We learned about the training procedures and 

methods in the platform. We implemented behavioral learning 

algorithms and checked quantitative performance in the road. 

We found that in an unknown environment the prediction 

accuracy gets reduced. In case of shuttle car, this algorithm is 

beneficial, since the shuttle car has less change in feature in front 

of the camera sensor in its environment and very specific road 

lane for shuttle car.
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