
1. Introduction

Experimental setup to train an autonomous shuttle vehicle in a

real physical world will be extremely troublesome. Since there

are a lot of scientific parameters ought to be considered to make a

training and test situation[1]. Moreover, the expense and the strategic

troubles in case of the real-world experimental training is also a

hindrance[2]. To able to learn properly, a machine needs to collect

and train a large number of parameters in the model. In that case,

the requirements of large data arise. Using a single vehicle, it is

impossible to perform all the event needed to train a vehicle

perfectly and gather data for those situations. Thus, alternate

planning is badly needed where a virtual world can perform the

continuous experiment of training a vehicle for autonomous car

research. The simulator also gives an inherently safe environment

for driving research[3]. There is no endangerment to the driver or

other vehicle users or pedestrians in case of the simulator. However,

training autonomous driving vehicle with reinforcement learning

in the real environment involves non-affordable trial-and-error.

It is more desirable to train in a virtual environment initially and

then transfers to the real environment[4]. A brief survey about the

유니티 실시간 엔진과 End-to-End CNN 접근법을 이용한

자율주행차 학습환경

Autonomous-Driving Vehicle Learning Environments

using Unity Real-time Engine and End-to-End CNN

Approach

사비르 호사인1
․이 덕 진†

Sabir Hossain1, Deok-Jin Lee†

Abstract: Collecting a rich but meaningful training data plays a key role in machine learning and deep

learning researches for a self-driving vehicle. This paper introduces a detailed overview of existing

open-source simulators which could be used for training self-driving vehicles. After reviewing the

simulators, we propose a new effective approach to make a synthetic autonomous vehicle simulation

platform suitable for learning and training artificial intelligence algorithms. Specially, we develop a

synthetic simulator with various realistic situations and weather conditions which make the

autonomous shuttle to learn more realistic situations and handle some unexpected events. The virtual

environment is the mimics of the activity of a genuine shuttle vehicle on a physical world. Instead of

doing the whole experiment of training in the real physical world, scenarios in 3D virtual worlds are

made to calculate the parameters and training the model. From the simulator, the user can obtain data

for the various situation and utilize it for the training purpose. Flexible options are available to choose

sensors, monitor the output and implement any autonomous driving algorithm. Finally, we verify the

effectiveness of the developed simulator by implementing an end-to-end CNN algorithm for training a

self-driving shuttle.

Keywords: Autonomous Shuttle Vehicle, Artificial Intelligence, Virtual Environment, Behavior Learning

Received : Dec. 21. 2018; Revised : May. 13. 2019; Accepted : May. 23. 2019

※ This work was financially supported by the Kunsan National University’s

Long-term Overseas Research Program for Faculty Member in the year

2018.

1. Graduate Research Student, Center for Artificial Intelligence and

Autonomous system, Mechanical Engineering, Kunsan National

University, Gunsan, Korea (sabir@kunsan.ac.kr)

† Director, Associate Professor, Corresponding author: Center for Artificial

Intelligence & Autonomous Systems, Mechanical Engineering, Kunsan

National University, Gunsan, Korea (deokjlee@kunsan.ac.kr)

CopyrightⓒKROS

Journal of Korea Robotics Society (2019) 14(2):122-130
https://doi.org/10.7746/jkros.2019.14.2.122 ISSN: 1975-6291 / eISSN: 2287-3961122

유니티 실시간 엔진과 End-to-End CNN 접근법을 이용한 자율주행차 학습환경 123

existing open-source vehicle simulators available online was

presented in[5] where an efficient virtual simulating environment,

CAIAS simulator for the self-driving car by utilizing the Unity

real-engine was introduced, but there is no detailed description

about specific deep-learning based training methods.

This paper extends the previous work done in a previous

paper[5] by adding more hostile and realistic environments and

implementing an end-to-end deep learning method to teach a

self-driving car for controlling the motion of the vehicle.

In this paper, three major contributions will be highlighted.

First, we discuss open-source simulators and their features. All

the features in those simulators are explained in details and key

factors that are necessary for training autonomous vehicle with

application to deep learning methods are discussed. Second, we

propose a new effective approach to make a virtual simulation

environment suitable for teaching deep learning based agents

which control the motion of a self-driving car. Specially, we

developed a synthetic virtual simulator by using the real-engine

from Unity which could reflect various realistic situations and

weather conditions, making the autonomous vehicles to learn

and understand more realistic situations and some unexpected

events. Finally, we verify the effectiveness of the developed

simulator by implementing an end-to-end CNN algorithm[6] for

training a self-driving shuttle.

The remainder of the section is organized as follows. Section

2 provides an overview of the current open-source simulators

used for self-driving car researches. In Section 3, an autonomous

vehicle simulating environment for training the self-driving car

is presented. Section 4 describes the detailed implementation of

an end-to-end CNN based decision-making agent. Section 5

shows the verification of the performance of the proposed method.

2. Open-Source Simulators

There are many open-source vehicle simulators available

these days, and each was built for a specific purpose and test. An

overview of the simulators is represented below.

2.1 GAZEBO

The simulator is basically used for robot simulation. It is a

well-designed simulator for rapidly test algorithms, design

robots and train AI system using realistic scenarios. The Gazebo

simulator offers the ability to accurately and efficiently simulate

populations of robots in complex indoor and outdoor environ-

ments[7,8]. But, the problem is that the user needs to prepare the

whole virtual world before training. Moreover, it is very hard to

produce a dynamic 3D world in Gazebo[9].

2.2 TORCS

TORCS (The Open Racing Car Simulator)[10] is an open-source

3D car racing simulator which provides a realistic physical

racing environment with a set of highly customizable API[10].

TORCS allows both automatic features for AI drivers and

manual driving features using keyboard, mouse and wheel. But it

is not so feasible to train an RL model in this environment since it

does not provide proper visual API.

2.3 CARLA

An open-source simulator for autonomous driving research,

CARLA[11] provides the development, training, and validation of

autonomous urban driving systems. CARLA also provides open

digital assets (urban layouts, buildings, vehicles) that were

created for this purpose of dynamic real-life situations. The

simulation platform supports flexible specification of sensor

suites and environmental conditions[11].

2.4 AirSim

AirSim[12] simulator is an open-source, cross-platform for

drone and car both, and supports physically and visually realistic

simulations. It is developed as an Unreal plugin that can simply

be dropped into any Unreal environment as well as unity

environment which is developed recently. AirSim platform is

arranged for AI research to experiment with deep learning,

computer vision and reinforcement learning algorithms. It is

possible to retrieve data and control vehicles in a platform

independent way from the API[12].

3. Autonomous Vehicle Simulator

Unity is used to build a virtual simulating environment for

training autonomous vehicles. This vehicle simulator is modified

version of Udacity simulator[13]. Since Unity has a good user

124 로봇학회 논문지 제14권 제2호 (2019. 6)

interface and powerful interactive design module, this integrated

platform is best for creating 3D simulator or other interactive

contents such as virtual reconstructions or 3D animations in real

time[14]. To design the simulation environment and for training

purpose, we used a hardware system which consists of Intel Core

i7 CPU, 64 GB RAM and GTX 1080 GPU.

3.1 The process of importing Shuttle cart in Unity

An autonomous vehicle for training purpose is designed using

Both SolidWorks and Blender software as a prototype of the real

shuttle vehicle shown in [Fig. 1] and then is converted to fbx file

and later imported environment. The server-client connection is

initiated in the simulation environment using Socket. This

SocketIO initiates the communication between the agent and the

algorithm. Agent vehicle and environment work as a server and

the model algorithm for training which works as a client. The

simulator is made compatible for common operating systems like

Windows, Linux and Mac OS with both 32-bit and 64-bit.

3.2 Environments Numbers

Two distinctive worlds with two different tracks, situations

and weather are provided. One of the environment track is a

forest environment. Here, the road is used in a loop, because in

real life most of the time, a shuttle car is used in campus premises

in a loop path. The same environment but different path track is

used to verify the performance after training the model in the

training path. Different path scenarios is a way to authentic that

the simulator result can easily be transferred to the real physical

world since the test ground path is totally different for the

training path. Forest environment contains critical path turning,

step slop, bumpy road condition, broken roads, sunny and

gloomy weather. Sunny weather for training shown in [Fig. 2(a)]

and gloomy or raining weather for the test shown in [Fig. 2(b)].

The user can choose preferable tracks to train the model. For

training, path design, color is different [Fig. 2(a)] and the

weather condition is sunny. For the test, road color and weather

will be gloomy like [Fig. 2(b)]. The reason for converting one

real-life scenario to convert to a virtual environment is to check

and test some algorithm which can imitate the behavior from the

image. So, having one scenario as like real life will give the

advantage to evaluate those algorithms as well. Another track is

randomly designed just to check all the steering angles and

[Fig. 1] Blender and SolidWorks software both are used to

design the prototype vehicle. (a) Top View (b) Isometric View

(c) Front View (d) Side View

(a)

(b)

[Fig. 2] The forest environment for Train (a) and Test (b)

유니티 실시간 엔진과 End-to-End CNN 접근법을 이용한 자율주행차 학습환경 125

speeds of the agent car produced during the simulation. This

environment contains the countryside road, trees, random

obstacles, grasses and driving lanes.

The environment is constructed using different critical

conditions and scenarios to make the model from training more

well-efficient. The simulator contains another campus rural map

shown in [Fig. 3] & [Fig. 4] in which we tried to develop one

environment mimics with the campus environment. Skybox used

to make the environment look more realistic which is a wrapper

around your entire scene that shows what the world looks like

beyond your geometry[15].

3.3. Weather Conditions and Different Road Layout

The tracks both contain rainy, hailing, fog, snowy, dry

weather with both day and night time feature. To check further

performance road layout and the color is changed.

To make it more realistic closely related to the physical world,

some feature like a road bump, broken road, road slop, sun

reflection in the road are included shown in [Fig. 5] and [Fig 6].

[Table 1] show the list of all simulation condition in the simulator.

3.4 Types of Sensors

Three types of sensors configuration are provided in the agent

vehicle. The user can choose one or multiple sensors to generate

results according to their model.

3.4.1 RGB Camera

A built-in script in Unity is used for the camera image. A

camera is a device through which the player views the world like

a simple camera. Here specifying pixel value is one of the

[Fig. 3] The second virtual environment on the simulator is the

depiction of shuttle rail on a campus area

[Fig. 4] The map of the second track of campus rural area

(a) (b)

[Fig. 5] Rainy Weather in the Environments (a) Wet road Forest

Environment, (b) Campus rural area

(a) (b)

(c) (d)

[Fig. 6] Hailing Weather Condition in the Environments

(Marked yellow particles are Hail Stone) in (a), Snowy Weather

Condition in the Environments (b), Foggy Weather Condition

with less visibility in the Environments (c), Sun Reflection in

the wet road in (d)

[Table 1] All tracks and Weathers

Environment Weather

Forest Shuttle

Environment

Training Track All

Testing Track
Rainy, Hailing, Foggy, Slippery

Road, Day & Night

Campus Rural Area (Test) Snow, Foggy, Night

126 로봇학회 논문지 제14권 제2호 (2019. 6)

important things. The single-camera is shown in [Fig. 7(b)] and

multiple cameras showed in [Fig. 7(a)] is used as a sensor input.

The idea of three multiple cameras is from behavior learning

using convolutional network[6].

3.4.2 LiDAR Sensor

LiDAR sensor imitation and obtain the LiDAR data as a form

of an image by casting each individual laser in the simulator.

This implementation is intuitive and accurate. For each laser in

the simulated LiDAR, a raycast is used to detect the distance. In

the update loop, if the timer exceeds the limit, a list of raycast

will be a trigger to gather distance information[5,16]. The result of

all raycast is stored in a depth map image which is shown in [Fig.

8(b)]. The green image below the picture of the environment is

the distance matrix correspond to the positions of all the obstacle

in the environment, depicted in [Fig. 8(a)].

3.4.3 Depth Camera Sensor

A depth or motion vector texture can be generated from

camera function in unity. This is a minimalistic G-buffer Texture

that can be used for post-processing effects or to implement

custom lighting models. Hence, it is usable as an output image

like [Fig. 9] from the depth camera which produces the layer of

the depth sensor completely based on the experiment layout[5,16].

3.5 User Interface of Simulator and Operation

The physics of shuttle vehicle is used for the driving simulation

system is similar to shuttle vehicle dynamics. The functions and

particle effects in the imported Unity were used to create trees,

grass, object, and climate shown in [Fig. 5] and [Fig. 6] and

lighting effects to simulate the real environment. The user can

choose the favorable track and environment with respect to the

sensor options. From the car user interference display, car speed

and the angle are visible. The user can obtain the steering angle

and speed during the training mode by using socket communication.

4. End-To-End CNN based Self-Driving

In this section, we will discuss the algorithms we used to

verify the performance of the simulator. Also, the procedures for

training a vehicle will be thoroughly described for algorithms

like behavior learning[6,17] in this section. The methodology

displays an end-to-end convolutional neural network (CNN)[6],

trained with labeled data (steering angle, obstacles, roads, lanes)

on different street conditions to avoid obstacles and autonomous

navigation in an obscure condition. It includes image input from

(a) (b)

[Fig. 7] Multiple camera (Left-Center-Right) train and receive

data from the environment. (a) And a Single camera to take

image input for the test (b)

(a)

(b)

[Fig. 8] LiDAR sensor casting ray over different obstacles (a)

and a depth map of the distance matrix corresponding to the

positions of all the obstacle in the environment (b)

[Fig. 9] These figures show the output of the RGB camera and

depth camera simultaneously

유니티 실시간 엔진과 End-to-End CNN 접근법을 이용한 자율주행차 학습환경 127

the simulation environment, image processing and transformation,

color modification for lanes and array representation of images

(NumPy array[18]). The labeled data and images are fed into the

convolutional neural network, which generates a calculated steering

angle and speed values as output. [Fig. 10] presents a flowchart

for the steps related to autonomous driving in the methodology.

4.1 Data Collection and Preprocessing

The car is driven manually in simulated roads to gather the

data. Three cameras (front left, front middle and front right) are

connected to the car which allows recording the environment

simultaneously record three other parameters: steering angle,

speed and throttle synchronized with the recorded images.

Image cropping, Pre-processing[19], Random shadow and brightness

algorithms are applied. The image segmentation[20] and augmentation

are applied to increase performance output in the CNN model

and reduce noise and unimportant features from the image.

4.2 Architecture of CNN Training

The depicted technique structure is a fully-connected convolutional

neural network which can learn representations from input

camera images and use it for autonomous driving. The shown

[Fig. 11] display the end-to-end convolutional neural network

used for autonomous driving in this work. This architecture is

similar to the architecture of Nvidia CNN architecture model[6].

The network consists of 5 convolutional layers and 3 fully-

connected layers. The convolutional layers are designed for

features extraction. First 3 convolutional layers use 2x2 strides

and next 2 convolutional layers use 1x1 strides. All the convolutional

layers use 5x5 kernels. Fully-connected layers are designed to

function as a steering controller which generate the steering

control value output. [Table 2] presents a summary for the network

with layers, kernel size, strides, number of filters (convolutional

layers) and the number of neurons (fully-connected layers).

The CNN is trained with the weights to minimize the mean

square error between predicted steering command and either

steering commands from the human driver or the adjusted

steering for off-center and rotated images.

The reordered data from the simulation environment (record

image) is labeled with road-type and driver's behavior (turning,

lane switching, lane following, brake, etc.). Data is preprocessed

[Fig. 10] Step by Step Process of training and testing of Behavioral

Cloning

[Table 2] Behavioral learning configurations for Layers, Filters, Kernels, Strides and Neurons

Convolution Layer 1 : 5x5 Filter : 24 Stride : 2x2 Activation: ELU (Exponential Linear Unit)

Convolution Layer 2 : 5x5 Filter : 36 Stride : 2x2 Activation: ELU (Exponential Linear Unit)

Convolution Layer 3: 5x5 Filter : 48 Stride : 2x2 Activation: ELU (Exponential Linear Unit)

Convolution Layer 4: 3x3 Filter : 64 Stride : 1x1 Activation: ELU (Exponential Linear Unit)

Convolution Layer 5: 3x3 Filter : 64 Stride : 1x1 Activation: ELU (Exponential Linear Unit)

Fully Connected 1 Neuron : 100 Activation: ELU (Exponential Linear Unit)

Fully Connected 2 Neuron : 50 Activation: ELU (Exponential Linear Unit)

Fully Connected 3 Neuron : 10 Activation: ELU (Exponential Linear Unit)

Fully Connected Neuron : 1 (Output) Activation: ELU (Exponential Linear Unit)

[Fig. 11] Fully Connected CNN Architecture

128 로봇학회 논문지 제14권 제2호 (2019. 6)

and fed into the network for training with their corresponding

labels. [Fig.12] illustrates the data collection and training for

autonomous driving using end-to-end CNN.

5. Results

Convolutional Neural Network training is dependent on how

it sees the images. Keras helps to visualize the CNN layers

output[21] and to understand how an input image is processed

inside the network. Following output in [Fig. 13] is generated on

an image input by the CNN network. Keras feature map

generates all the plots for the convolutional layer. From

convolutional layer 1 & 2, the model can get features like edges,

curves and lines. The features in convolutional layer 3 & 4 are a

higher level of complex feature which is learned from previous

output.

The network is trained with 10 epochs and 20000 samples per

epochs. The learning rate for the network is in exponential form,

 = 0.0001 and, a batch size of 40 is applied. The training loss

and validation loss is calculated and visualized in run-time using

Keras. History can be tracked in Keras while training is going on.

Later, it is possible to use those data to plot the graph using matplotlib

python library. [Fig. 14] presents the training accuracy and

training loss and validation loss respectively. Since the loss of

both training and validation reduced systematically, it can be

said that the model is not over-fitted. [Fig. 15] plot shows the

model loss after 200000 batches. As the training proceed, the

model loss reduced. It indicates the model got better with more

training data.

[Table 3] reports the number of times vehicle effectively

finished test condition under two distinct scene and two different

[Fig. 12] Training Strategy using behavior learning

(a) (b)

(c) (d)

[Fig. 13] CNN Layer Output Visualization (a) Conv. 1 (b)

Conv.2 (c) Conv.3 (d) Conv.4

[Fig. 14] The training loss after 10th Epoch

[Fig. 15] The training loss after 200000 batches

[Table 3] Qualitative Evaluation of performance

Scenarios
Behavior Learning

Forest Shuttle Track (Rain) Campus Track (Night & Snow)

Straight 20 20

Left Turn 20 16

Right Turn 20 16

Hard Left 18 17

Hard Right 17 17

Bumpy Road 17 18

Obstacle Avoid 16 12

유니티 실시간 엔진과 End-to-End CNN 접근법을 이용한 자율주행차 학습환경 129

weather using the same model generated after training. The

quantitative evaluation is performed in both tracks. One of them

is Forest shuttle track in rainy weather another of them is campus

track during the night and snowy weather. We have executed

each of the conditions mentioned in [Table 3] 20 times using our

trained model on the mentioned scenarios and collected the

number of times it succeeded. Though the result may vary with a

different model of the dataset. Since a good amount of dataset

will help to generate a perfect model. In general, the execution of

all strategies is working properly and the achievement rate is

good. The test results from the performance verify the efficacy of

the simulator. From the result, it was evident that end-to-end

CNN works efficiently in a similar environment it was trained.

Validating the model in a different environment gives less

success rate in case of behavioral cloning method. So, it is

worthwhile to implement behavioral cloning in shuttle car since

there is less change in a feature of a shuttle car and its

environment.

6. Conclusion

In this study, we discussed about various simulators and their

supporting API. One of the main reason to choose this simulator

and train especially for behavioral cloning is the data generation

for various environment and weather is quite easier in this

simulator. Recording data for training using three camera sensor

is a key feature to train using Nvidia end-to-end CNN behavioral

cloning model. Also, the socket interface made the communication

easier between the code and simulator. We discussed the

development process of a dynamic simulator which has two

different worlds consisting of different weather condition and

situations. The dataset from the synthetic environment made the

model more robust for shuttle car environment. Since it is kind of

supervised learning, the dataset from the diverse environment

and weather can boost up the accuracy of the steering angle of

the model. We learned about the training procedures and

methods in the platform. We implemented behavioral learning

algorithms and checked quantitative performance in the road.

We found that in an unknown environment the prediction

accuracy gets reduced. In case of shuttle car, this algorithm is

beneficial, since the shuttle car has less change in feature in front

of the camera sensor in its environment and very specific road

lane for shuttle car.

Acknowledgment

This work was financially supported by the Kunsan National

University’s long-term Overseas Research Program for Faculty

Member in the year 2018, and I would like to express special

thanks.

References

[1] L. Meeden, G. McGraw, and D. Blank, “Emergent control and

planning in an autonomous vehicle,” 15th Annual Conference of

the Cognitive Science Society, 1993.

[2] P. Koopman and M. Wagner, “Challenges in autonomous

vehicle testing and validation,” SAE International Journal of

Transportation Safety, vol. 4, no. 1, pp. 15-24, 2016, doi:

10.4271/2016-01-0128.

[3] E. Blana, “A survey of driving research simulators Around the

World,” Institute of Transport Studies, University of Leeds,

Dec. 1996.

[4] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to real

reinforcement learning for autonomous driving,” British

Machine Version Conference (BMVC), pp. 11.1-11.13, Sept.,

2017, doi: 10.5244/C.31.11.

[5] S. Hossain, A. R. Fayjie, O. Doukhi, and D.-J. Lee, “CAIAS

simulator: self-driving vehicle simulator for AI research,” International

Conference on Intelligent Computing & Optimization, pp. 187-

195, 2018, doi: 10.1007/978-3-030-00979-3_19.

[6] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B.

Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang,

Xin Zhang, Jake Zhao, and Karol Zieba, “End to end learning

for self-driving cars,” arXiv:1604.07316 [cs.CV], 2016.

[7] Gazebo, [Online], http://gazebosim.org, Accessed: May 26, 2019.

[8] ROS.org, [Online], http://wiki.ros.org/gazebo, Accessed: May

26, 2019.

[9] T. Linner, A. Shrikathiresan, M. Vetrenko, B. Ellmann, and T.

Bock, “Modeling and operating robotic environent using

Gazebo/ROS,” 28th international symposium on automation

and robotics in construction (ISARC2011), pp. 957-962, Seoul,

Korea, 2011, doi: 10.22260/ISARC2011/0177

[10] B. Wymann, C. Dimitrakakis, A. Sumner, E. Espié, and C.

Guionneau, “Torcs, the open racing car simulator,” TORCS:

The open racing car simulator, Software available at

http://torcs.sourceforge.net, Mar., 2015.

[11] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,

“CARLA: An open urban driving simulator,” arXiv:1711.

03938 [cs.LG], 2017.

[12] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim:

High-fidelity visual and physical simulation for autonomous

vehicles,” Field and service robotics, pp. 621-635, 2018, doi:

10.1007/978-3-319-67361-5_40.

130 로봇학회 논문지 제14권 제2호 (2019. 6)

[13] Udacity, A self-driving car simulator built with Unity, [Online],

https://github.com/udacity/self-driving-car-sim, Accessed: Dec.

14, 2018.

[14] V. De Luca, A. Meo, A. Mongelli, P. Vecchio, and L. T. De Paolis,

“Development of a virtual simulator for microanastomosis: new

opportunities and challenges,” International Conference on

Augmented Reality, Virtual Reality and Computer Graphics,

pp. 65-81, 2016, doi: 10.1007/978-3-319-40651-0_6 .

[15] L. Ni, Q. Peng, L. Yu, and J. Wang, “The research and

application of products virtual exhibition technology base on

unity 3D,” Digital Technology and Application, vol. 9, p. 36, 2010.

[16] Y. Wang, Self-driving car simulation, [Online], http://wangyangevan.

weebly.com/lidar-simulation.html, Accessed: Feb. 16, 2018.

[17] F. Codevilla, M. Miiller, A. López, V. Koltun, and A.

Dosovitskiy, “End-to-end driving via conditional imitation

learning,” in 2018 IEEE International Conference on Robotics

and Automation (ICRA), Brisbane, QLD, Australia, 2018, doi:

10.1109/icra.2018.8460487.

[18] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The NumPy

array: a structure for efficient numerical computation,” Computing

in Science & Engineering, vol. 13, no. 2, pp. 22-30, Mar.-Apr.,

2011, doi: 10.1109/mcse.2011.37.

[19] A. Lorsakul and J. Suthakorn, “Traffic sign recognition using

neural network on OpenCV: Toward intelligent vehicle/driver

assistance system,” Department of Biomedical Engineering,

Faculty of Engineering, Mahidol University, Thailand, 2008.

[20] N. R. Pal and S. K. Pal, “A review on image segmentation

techniques,” Pattern recognition, vol. 26, no. 9, pp. 1277-1294,

1993, doi: 10.1016/0031-3203(93)90135-J.

[21] M. Hänggi, S. Moser, E. Pfaffhauser, and G. S. Moschytz,

“Simulation and visualization of CNN dynamics,” International

Journal of Bifurcation and Chaos, vol. 9, no. 7, pp. 1237-1261,

1999, doi: 10.1142/s0218127499000882 .

Sabir Hossain

2015 Chittagong University of Engineering

and Technology, Bangladesh. (B.Sc.)

2017~ Kunsan National University, Korea

(Master of Sciences)

Interests: Autonomous Vehicles, Image Processing, Deep Learning.

Deok-Jin Lee

1996 Chonbuk National University , Korea (B.S.)

1999 Aerospace Engineering, Texas A&M

University, USA. (M.S.)

2005 Aerospace Engineering, Texas A&M

University, USA (Ph.D.)

2006-2007 Agency for Defense Development

(ADD), Korea

2007-2010 Naval Postgraduate School (NPS), USA

Current: Associate Professor at School of

Mechanical Convergence Systems

Engineering, and director, Center for

Artificial Intelligence & Autonomous

Systems (CAIAS) in Kunsan National

University, Korea.

Interests: Intelligent Autonomous Systems, Machine & Robotics

Learning, Deep Reinforcement Learning, Sensor Fusion and

Sensor Networks, Adaptive Estimation and Control, and

Integrated Navigation and Localization

