
1. Introduction

Mapless navigation for mobile robots is one of the challenging 

problems for autonomous navigation tasks, where the robot finds 

collision-free paths in the unknown real-world. Besides, the 

conventional pipeline of map-based navigation including simul-

taneous localization and mapping (SLAM), and path planning 

algorithms is time-consuming, not feasible, and requires high 

computational costs for unstructured environments. To solve 

these issues, deep reinforcement learning (deep RL) models are 

considered as promising methods to navigate the robot in 

unknown scenarios without collision avoidance. Several studies 

[1,2] show the outstanding performance and high applicability, 

that deep learning models for mobile robots from virtual to real 

environments. Hence, applying the sim-to-real model to auto-

nomous navigation tasks using RL algorithm in real-world 

scenarios should be thoroughly investigated and developed.

Recently, deep RL methods using actor critc architecture with 

entropy regularization have made significant strides in realm of 

robotics domains, including mapless navigation tasks[3]. Applying 

entropy regularization into actor critic networks has seen 

successes in continuous control tasks, which balance exploration 

and exploitation[4]. In another aspect of RL, the distributional RL 

has been developed successfully by considering the whole dis-

tribution of value function instead of the expected return in game 

environments[5].

A series of studies have been conducted to make agents get 

more insight and knowledge and also demonstrate the perfor-

mance in the arcade game environments. By taking advantage of 

a distributional framework, Liu et al.[6] utilized the value of 

Conditional Value at Risk forecasting intrinsic uncertainty to 

perform drone navigation task. However, mapless navigation 

tasks are performed limited convincing results of real-time 

experiments using the distributional soft actor critic (DSAC)[7], 
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which take advantage of entropy term and distributional 

information of value function. The efficacy of DSAC for robot 

mapless navigation deserves more attention in real-world 

scenarios. Additionally, service mobile robots typically operate 

in chaotic real-world environments with human movement and 

unexpected obstacles, which differ from simulations and are 

prone to navigation errors leading to potential crashes. 

The primary aim of this paper is to demonstrate and compare 

the effectiveness of deep RL networks in aspect of distributional 

RL compared with traditional RL for application of mobile robot 

navigation. Moreover, information randomness from complex 

environment is approximated by applying distributional value 

function to solve mapless navigation issues of mobile robot. 

Moreover, conditional value at risk (CvaR)[8] is applied to 

consider random uncertainty of the environments. The effec-

tiveness of mapless navigation framework is proven on safety 

navigation task in simulation and real environments with limited 

field of view (FOV) of exteroceptive sensor (shown in [Fig. 1]).

The work is constructed as follow: the approach is presented 

in sention 2, which encompassed problem and our method. In 

section 3, the results related to simulation and real-world experi-

ments are mentioned. Finally, the conclusion is summarized in 

section 4.

2. Mapless navigation framework

In this section, the problem formulation and proposed 

approach are described in detail. 

2.1 Problem Formulation 

Mapless sensor-level navigation is described as the policy 

trained in the simulation to drive a mobile robot in the real world. 

We formulate the autonomous navigation problem by using a 

Partial Markov Decision Process (POMDP), which consists of a 

tuple  , where   presents state space ∈ ,  

is action space ∈ ,  presents actions space,   present 

reward function,  is sensor observation.

State space: The state of the agent     , where  is 

normalized laser readings,  is the displacement of the robot in 

polar coordinates,   is the deviation angle between the robot and 

the goal direction.

Action is two-dimensional vector, which includes linear 

velocity  and angular velocity w of that robot mapped with the 

input of model    w . 

Reward function: Since the optimal policy is affected 

intensively by reward signals, distinct behaviors of the agent are 

reshaped as the reward function. Based on the previous work[3], 

we restrengthen the reward function of the policy for collision- 

free navigation tasks, comprise of  r   and  :

   r   (1)

  and   are the robot at the current and position and 

previous timestamp.  is reward of reaching the goal. The 

relative reward   and safety reward r  are defined as:

   ∥ ∥∥  ∥




 ∥∥
cos

(2)

r   


  (3)

Where   are coefficients,  is robot radius. The resparse 

reward when reaching to the target is    and    

is given if the collisions happen. 

2.2 Distribution Soft Actor Critic

The fundamental concept of Distributional SAC framework is 

to use random information to estimate value function within 

continuous action space. The advantage of DSAC is to take 

advantage of SAC while keep exploration based on random 

domain of value function. Existing distributional RL[5] algorithm 

rely on distributional Bellman equation. The value distribution 

can be defined as:

[Fig. 1] Mapless navigation framework based on DSAC
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Where 
    
  denotes equal probability laws between those two 

random variables  and  , ∈   is discount factor,

   ′ ′   is random return given the next state-action 

 ′ ′  .      is random distribution return and    is 

random reward. With maximum entropy RL of SAC[2], the soft 

action-value function of a DSAC policy is: 
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Inheriting from the Actor-Critic network, the critic utilizes 

quantile fraction  … 


 and  
′ … 



′ ,  ′   is the 

number of quantile sampled separately, the loss of the critic: 
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The quantile regress loss and the temporal difference are defined 

as equation (7), (8) respectively.

    min  (7)


 

′

  ′
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(8)

Where      is a transition of buffer.    is 

critic output, which estimate of the  - quantile of distributional 

value function. The objective of policy is formulated as 

  
     log   (9)

In order measure risk sensitive decision, CVaR[8] is applied to 

approximate quantile value under uncertainty with actions and 

rewards.

    (10)

Where ∈   is the risk distortion coefficient,    give a 

risk-neutral policy. 

2.3 Network architecture 

The robot states are generated from laser readings from 

LiDAR and combined with relative location from odometry data. 

Based on[4], the architecture of the network comprises of 108 

inputs of Actor networks including 105 laser scans from the 

YDLIDAR G6 sensor, deviation angles, and minimum range 

distance. After using a re-parameterized trick, the Actor network 

produces distribution of the bound angular and linear velocity. 

The Actor neural network is constructed by decreasing the 

network size over each layer, leading to optimize computation 

and keep the simple network and rich presentations The Critic 

network is present in [Fig. 2], which is incooperated with 

quantile[8].

3. Experimental result

3.1 Simultion result 

Both physical simulation and real-world environments are 

particularly utilized for training and testing Deep RL model in 

term of accelerating simulation time (shown in [Fig. 3]). The 

whole training process is conducted on a Gazebo Simulation 

with a 10Hz control frequency. The Simulation will reset (after 

0.5s) when the robot’s collision happens in the virtual 

environment The virtual environment is created by designing an 

environment with natural elements that closely resemble those 

found in the real world. Various obstacles of different sizes 

ensure the diversity and complexity of the test environment. To 

[Fig. 2] The structure of actor and critic network
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generalize the algorithm’s performance, we trained the deep RL 

algorithm with the framework over service robot model for 

approximately 1200 episodes. With the acceleration time in 

simulation. The entire training process trained by DSAC tooks 

nearly 5 hours, significantly reducing the time[9]. 

To evaluate mapless navigation algorithms, the learning curve 

over training progress is depicted in [Fig. 4]. The maples navi-

gation algorithm based on DSAC algorithm is compared with 

two state of the art algorithm SAC[4] and PPO[10]. It can be seen 

that the speed of learning curve using DSAC get faster and also 

more stabilize than SAC and PPO. [Fig. 4] illustrates the highest 

average score of Distributional SAC among other SOTA 

algorithms. The hyper parameters for training and testing in the 

simulation are shown in [Table 1]. The deep RL model will find 

arbitrary goals which is set randomly in the virtual environment 

avoiding different shapes of object (shown in [Fig. 5]). The [Fig. 

6] shows the success rate in three virtual environments environ-

ments. The risk-sensitive policy is changed slightly depending 

on confidence level  , the risk neutral policy performs better 

than others shown in [Fig. 7].

[Fig. 3] The Gazebo simulation during training

[Fig. 4] Training curve of SAC, PPO, DSAC algorithms 

according to hyper parameters in Table 1

(a) (b) (c)

[Fig. 5] Testing in simulation environment including environ-

ment (a), environment (b), environment (c)

[Fig. 6] The success rate under test evaluation in the simulation

[Fig. 7] Comparison of risk averse policy with CVaR

[Table 1] Hyper parameter for training DSAC algorithm

Angular velocity (rad/s) [-1.0,1.0]

Linear velocity (m/s) [0.0,1.0]

Maximum steps per episode 1200

Buffer size 3.106

Batch size 3.10-4

Learning rate 3.10-4

Discount factor 0.99

Optimizer Adam

Number of quantiles 32

Quantile fraction embedding size 64
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3.2 Real-world experiment result

The mapless navigation using DSAC is performed in two real 

world scenarios. First, we evaluate the DSAC algorithm in the 

clutter environment illustrated in [Fig. 8], with two consecutive 

target positions. Then, corridor environment with human motions 

is performed to evaluate the collision avoidance ability of the 

DSAC algorithm. The YDLIDAR is equipped on the service 

robot to sensing the environment from -60° to 60°. The on-board 

computer was a mini-PC with CPU AMD Ryzen™ 7 5700U 

Processor. The trajectory result of clutter environment and 

corridor environment are shown in [Fig. 9]. The map information 

is installed to only assist localization visually in the real-world 

scenarios’ evaluation[11]. The experiment video can be shown in 

https://youtu.be/CxFutv_RlkU.

4. Conclusion

This paper bridges the gap between simulation and the real 

world to demonstrate the efficiency of a deep RL model trained 

using the distributional SAC algorithm. In this work, we utilized 

low-cost LiDAR, which is susceptible to inaccurate sensing due 

to limited light in outdoor environments. This leads to the loss of 

the model’s state input and imprecise localization. We consider 

this issue as a subject for future research.
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