
1. Introduction

Multi-agent Pathfinding (MAPF) is the problem that finds

collision-free paths for multiple agents from their start locations

to their goal locations while optimizing the sum of total path

lengths or the time taken for all tasks to complete[1]. It has

numerous applications in various domains, such as logistics,

aircraft, and urban traffic systems. In many such applications, the

agents are tasked to visit multiple destinations consecutively.

Lifelong MAPF[2] is an extended version of the MAPF problem.

In contrast to the canonical form of MAPF, where each agent has

only one task and remains at its goal location, lifelong MAPF

requires agents to generate paths to their respective new goal

locations after reaching their current goals. The challenges lie in

the fact that the next goals are not known to the agents befo-

rehand and the time that the agents finish their current tasks are

not synchronized. Thus, it is paramount to have an efficient

method that can find collision-free paths promptly for a dyna-

mically varying task set given a limited time budget.

The League of Robot Runners[3] is a competition to tackle the

lifelong MAPF in challenging environments in terms of the com-

plexity of the environments as well as the scale of the agent team.

Our team AIRLAB (ranked 8th) developed a method employing

one of the state-of-the-art algorithms MAPF-LNS2[4] and Rolling

Horizon Collision Resolution (RHCR) framework[5] as the MAPF

solver. To enhance this approach, we develop Puzzle Heuristics

that generates a compact heuristic table to reduce memory con-

sumption and computation, and successfully integrated it with

these existing methods.

퍼즐 휴리스틱스: 대규모 환경을 위한 효율적인 다중

에이전트 경로 탐색 알고리즘

Puzzle Heuristics: Efficient Lifelong Multi-Agent Pathfinding

Algorithm for Large-scale Challenging Environments

이 원 종1*
․ 심 준 열2*

․ 남 창 주†

Wonjong Lee1*, Joonyeol Sim2*, Changjoo Nam†

Abstract: This paper describes the solution method of Team AIRLAB used to participate in the

League of Robot Runners Competition which tackles the problem of Lifelong Multi-agent

Pathfinding (MAPF). In lifelong MAPF, multiple agents are tasked to navigate to their respective

goal locations where new goals are consecutively revealed once they reach initial goals. The agents

need to avoid collisions and deadlock situations while they navigate to perform tasks. Our method

consists of (i) Puzzle Heuristics, (ii) MAPF-LNS2, and (iii) RHCR. The Puzzle Heuristics is our own

algorithm that generates a compact heuristic table contributing to reduce memory consumption and

computation time. MAPF-LNS2 and RHCR are state-of-the-art algorithms for MAPF. By combining

these three algorithms, our method can improve the efficiency of paths for all agents significantly.

Keywords: Multi-AMR Control, Path Planning, Search Algorithm

Received : Apr. 19. 2024; Revised : Jun. 10. 2024; Accepted : Jul. 23. 2024

※ This work was supported by the National Research Foundation of

Korea (NRF) grant funded by the Korea government (MSIT) (No.

2022R1C1C1008476).

* Wonjong Lee and Joonyeol Sim contributed equally to this work.

1. Graduate Student, Dept. of Artificial Intelligence, Sogang University,

Seoul, Korea (leewj1208@sogang.ac.kr)

2. Graduate Student, Dept. of Electronic Engineering, Sogang Univer-

sity, Seoul, Korea (jysim@u.sogang.ac.kr)

† Assistant Professor, Corresponding author: Dept. of Electronic Engi-

neering, Sogang University, Seoul, Korea (cjnam@sogang.ac.kr)

CopyrightⓒKROS

Journal of Korea Robotics Society (2024) 19(3):281-286
https://doi.org/10.7746/jkros.2024.19.3.281 ISSN: 1975-6291 / eISSN: 2287-3961 281

https://crossmark.crossref.org/dialog/?doi=10.7746/jkros.2024.19.3.281&domain=https://jkros.org/&uri_scheme=http:&cm_version=v1.5

282 로봇학회 논문지 제19권 제3호 (2024. 9)

2. Problem Definition

Our goal is to solve the lifelong MAPF instances presented in

the League of Robot Runners competition. Therefore, the problem

definition is dictated by the goal and rules of the competition.

A team of  agents  ⋯ perform errands (i.e.,

tasks) that appear in an online manner in a deterministic and a

fully observable environment. The environment is represented

by a grid map (, ) where is the set of vertices (repre-

senting grid cells) and  is the set of edges representing the

adjacency of the cells (i.e.,  is a 4-connected graph). The agents

operate on discrete time steps, denoted as t = 0, 1, 2, ..., τ where

a constant τ is the final time step of an instance. At each time

step, each agent can perform one of the four actions: move

forward, rotate left or right 90 degrees, or wait.

The position 

∈ is the position of agent  on the grid map

at time step . Let 
 


⋯

 be a path of agent 

from to  that the agent plans to move. Along the path, an

agent must avoid conflicts with other agents. Two types of

conflicts are defined: (ⅰ) the vertex conflict, where more than

one agent moves to the same position, and (ⅱ) the edge conflict,

where two agents swap their positions simultaneously. Specifically,

a vertex conflict occurs at  if ∃ such that ≠ and 
 

.

And edge conflict occurs at  if ∃ such that ≠, 
 



and 
 

. An errand is located on a position in the map. It

can be completed only if the agent assigned to it arrives at the

position of the errand. An agent becomes to know the next errand

only after it finishes the current one.

Given the assumptions and definitions, the objective of the

lifelong MAPF is to maximize the number of errands to be

completed by within   ⋯τ.

3. Method

By integrating MAPF-LNS2, RHCR, and Puzzle Heuristics,

our method can handle large-scale lifelong MAPF instances in

challenging environments. [Fig. 1] represents an overview of our

algorithm procedure.

We provide a detailed description of each component and how

they contribute to the overall effectiveness and efficiency of our

solution method.

3.1 Puzzle Heuristics

The shortest distance between a pair of cells is frequently

queried in an MAPF instance. In a fast-paced situation where the

[Fig. 1] Illustration of the process of the MAPF-LNS2 and RHCR for Lifelong Multi-Agent Pathfinding (MAPF). Starting from the

input MAPF instance, the solver plans  steps, which is the window size representing the time horizon for conflict resolutions, and

generates an action sequence. After each action is simulated, the system replans after  steps, where  is the replanning period

indicating the frequency of replanning. This windowed approach represents the RHCR method. The diagram shows the initial state,

intermediate steps, and the continuous loop of planning and replanning to achieve collision-free paths for agents in a grid map. The

circles represent the positions of the robots, while the triangles indicate their target positions

퍼즐 휴리스틱스: 대규모 환경을 위한 효율적인 다중 에이전트 경로 탐색 알고리즘 283

quick online computation of paths is necessary, it is a common

approach to precalculate the distances of all pairs. However, as

the size of the map grows, the memory required to store the

(Manhattan) distances increases significantly. A naïve method

has the space complexity   for a grid map with N cells.

This is particularly problematic in the competition since the

memory size allocated to our method is limited. If we reduce

memory usage by storing only part of the distances, some of the

computation time needed to resolve inter-agent conflicts at

runtime needs to be allocated to calculate the distances. There-

fore, the quality of the solution should be compromised to

balance the trade-off between storage space and computational

overhead.

The core idea of Puzzle Heuristics is to divide the grid map

into areas such that each area contains contiguous cells within a

depth  in a tree search from its central cell called the pivot point.

The algorithm begins by selecting the lowest indexed cell (the

index increments from top to bottom and left to right like the

pixel coordinates) in the grid map as the first pivot point. Using

Breadth-First Search (BFS), the area expands over non-obstacle

cells from the pivot point, ensuring that the frontier of the BFS

does not exceed a depth of .

Cells within the area are labeled with the same unique puzzle

index. The process selects the next unlabeled cell with the lowest

index as the new pivot point to repeat the area expansion. This

procedure iterates until all cells in the grid map are labeled. The

same-colored neighboring cells shown in the map of [Fig. 2]

belong to the same area.

Once all cells are formed into areas, the shortest distances

between all pairs of areas (i.e., pivot points) are calculated and

stored in the heuristic table. By storing only the distances bet-

ween pivot points instead of all cells, we could meet the memory

constraint. When the distance between two cells is queried, the

heuristic value in the table effectively approximates the actual

distance.

The number of cells in an area can reach up to  so

at most  cells can be represented by a single value.

As a result, the size of the heuristic table using Puzzle Heuristics

could be reduced to , leading to significant

memory savings compared to the naïve approach.

3.2 MAPF-LNS2

MAPF-LNS2 is one of the state-of-the-art algorithms for

solving large MAPF instances by leveraging the powerful meta-

heuristic technique Large Neighborhood Search[6]. A key advantage

of MAPF-LNS2 is its ability to start from any of feasible or

infeasible initial solutions. The algorithm iteratively selects a

subset of agents using a neighborhood selection method. The

method destroys the current paths of agents and repairs them

using an efficient single-agent path planner that minimizes the

number of collisions. If the repaired solution reduces the number

of collisions, the new paths replace the old ones. This destroy-

and-repair procedure continues until a stopping criterion is

satisfied.

To achieve high efficiency, MAPF-LNS2 employs Safe Interval

Path Planning with Soft Constraints (SIPPS), a variant of the

Safe Interval Path Planning algorithm[7] that can handle hard and

soft constraints. Integrating SIPPS has shown significant impro-

vements of MAPF-LNS2. While MAPF-LNS2 can be used with

many existing MAPF algorithms, we choose to use Prioritized

Planning (PP)[8] which is simple to implement and fast.

3.3 RHCR

The RHCR is a framework for solving the lifelong MAPF by

decomposing an instance into a sequence of Windowed MAPF

instances. RHCR utilizes two user-specified parameters: the time

horizon  and the replanning period . The time horizon 

specifies the time window such that the MAPF solver must

resolve conflicts within the next  steps (i.e., windowed MAPF

solver). The replanning period  determines the frequency of the

solver to replan paths. To avoid collisions,  should be larger

than or equal to . The values of these parameters are critical for

[Fig. 2] An example result of the Puzzle Heuristics method for

generating a compact heuristic table. The same-colored neigh-

boring cells belong to the same area

284 로봇학회 논문지 제19권 제3호 (2024. 9)

the performance of RHCR. Too small values of  would lead to

deadlocks whereas too large values could result in inefficient

solutions and increased computation time.

3.4 Greedy Randomized Search

Although MAPF-LNS2 and RHCR can solve large instances

quickly, they would lead to deadlocks (i.e., no solution found) as

PP is not proven to be complete.

Consider a scenario where  and  face each other at t and

attempt to move forward. Here  has a higher priority. During

the planning phase,  plans its path 
 while ignoring the

presence of  as  has a lower priority. As a result, the planned

path of  goes through the current location of  at  (i.e.,


 

). Given this path 
,  begins to plan 

.

In this situation, all possible actions for  at  result in

conflicts because 
 passes through 

 in any case. Spe-

cific-ally, if  chooses to move forward, then an edge conflict

occurs (i.e., 
 

 
 or 

 
 

), respectively).

Thus,  cannot find a conflict-free action at . [Fig. 3]

illustrates the three conflict situations incurring deadlocks.

We develop a greedy randomized search that combines gree-

diness and randomness to deal with deadlocks. We probabi-

listically multiply the number of edge collisions and vertex

collisions by a factor of two. By doing so, our method could have

an opportunity to explore alternative paths rather than relying on

routes determined by the heuristic values. This simple yet effective

approach enables the algorithm to explore a broader range of

possibilities and escape from deadlocks. In our experiments, the

version with the greedy randomized search recorded of 31 times

higher number of errands than the version without the greedy

randomized search.

4. Experiments

We evaluate our method in five environments provided by the

competition: Sortation, Warehouse, Game, City, and Random

map, as shown in [Fig. 4]. Each instance has predetermined

agent-task pairs. We vary the number of agents from 50 to 3000

agents. The evaluation metric is the total number of errands

completed in 5,000 seconds. The test system is with AMD Ryzen

[Fig. 3] An illustration of deadlock situations where  and 

face each other and attempt to move forward as shown in the

grid map in the left. Blue () has a higher priority so plans 


which passes through the current position of  at . If 

moves forward, an edge conflict occurs. If  chooses to rotate

or wait, a vertex conflict occurs

[Fig. 4] The test environments in the competition. White cells

represent spaces that robots can occupy, while black cells

indicate the obstacles that robots cannot occupy. From the top

and left, (1) Random, (2) City, and (3) Game, (4) Warehouse,

and (5) Sortation maps

[Fig. 5] The number of completed errands by the proposed

method in five challenging environments: Sortation, Warehouse,

Game, City, and Random, with the number of agents ranging

from 50 to 3000

퍼즐 휴리스틱스: 대규모 환경을 위한 효율적인 다중 에이전트 경로 탐색 알고리즘 285

5800X 3.8 GHz CPU and 32G RAM. The source code is written

in C++17.

As shown in [Fig. 5], our method effectively solves instances

in the random map environment up to 200 agents.

In other environments, the solution quality remains reasona-

ble for instances with up to 1,200 agents but declines as the

number of agents increases.

The ability of MAPF-LNS2 and RHCR to solve large instances

allows our algorithm to handle scenarios with a significantly

large number of agents. The Puzzle Heuristics plays a crucial

role in reducing the memory consumption and computation time

for large-sized maps like Sortation, Warehouse, and Game. In the

greedy randomized search allows us to escape deadlocks effecti-

vely even in dense environments like Sortation, Warehouse, and

Random.

The algorithm struggles to find individual paths of all agents

within the time budget, particularly with a large number of

agents owing to the characteristics of PP, which plans paths

sequentially. Since higher-rank agents are considered fixed obs-

tacles to lower-rank agents, the feasible positions become scarce.

In the context of discussing the impact of the  value on the

performance of our method, we analyzed how varying  affects

both the number of completed errands and the associated file size

in Small Warehouse instance. [Fig. 6] illustrates these effects. As

depicted, increasing the  value from 0 to 5 leads to a notable

pattern: the number of completed errands rises initially, peaking

at  = 2, before declining as  continues to increase. This

indicates the best  value for maximizing the number of errands

completed. Concurrently, the file size decreases as  increases,

suggesting that higher  values lead to more efficient memory

usage. This trade-off between errand completion and file size is

critical for optimizing the performance of our method in various

environments.

In [Fig. 7], we observe a trade-off in choosing the value of  ,

which is the planning horizon  in RHCR. A low value of 

leads to efficient planning but could cause deadlocks because

agents may not be able to plan far enough ahead to avoid

conflicts. If we choose a high value, the ability to avoid dea-

dlocks is improved. Balancing between these two cases is critical

for the performance of algorithm.

5. Conclusion

In this paper, we presented a novel approach for solving the

challenging lifelong MAPF problem in the context of the League

of Robot Runners competition. Our method combines three key

techniques: Puzzle Heuristics, MAPF-LNS2, and RHCR. Addi-

tionally, we introduced a greedy randomized search to escape

from deadlock. Experimental results demonstrated the effectiveness

of our approach in various environments, particularly in random

maps with a moderate number of agents. Through participation

in the competition, we found our future directions that include

improving the scalability of the method and implementing

methods to avoid deadlock situations.

References

[1] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J.

Li, D. Atzmon, L. Cohen, T. K. Kumar, R. Barták, and E.

Boyarski, “Multi-agent pathfinding: Definitions, variants, and

benchmarks,” International Symposium on Combinatorial Search,

vol. 10, no. 1, pp. 151-158, 2019, DOI: 10.1609/socs.v10i1.18510.

[Fig. 6] The impact of varying the  value on the number of

completed errands (blue line) and file size (red dashed line). As

the  value increases from 0 to 5, the number of errands initially

increases, reaching a peak at  = 2, before declining. Con-

versely, the file size decreases with increasing  values

[Fig. 7] The impact of varying the window size  on the number

of completed errands. As the  size increases from 5 to 25, the

number of completed errands initially rises, reaching a peak at

 = 20, before showing a decline

286 로봇학회 논문지 제19권 제3호 (2024. 9)

[2] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig, “Lifelong multi-agent

path finding for online pickup and delivery tasks,” arXiv:1705.

10868, 2017, DOI: 10.48550/arXiv.1705.10868.

[3] The League of Robot Runners, [Online], https://www.leagueo

frobotrunners.org, Accessed: Aug. 30, 2023.

[4] J. Li, Z. Chen, D. Harabor, P. J. Stuckey, and S. Koenig,

“MAPF-LNS2: Fast repairing for multi-agent pathfinding via

large neighborhood search,” AAAI Conference on Artificial

Intelligence, vol. 36, no. 9, pp. 10256-10265, 2022, DOI: 10.1609/

aaai.v36i9.21266.

[5] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. K. S. Kumar, and S.

Koenig, “Lifelong multi-agent path finding in large-scale ware-

houses,” AAAI Conference on Artificial Intelligence, vol. 35, no.

13, pp. 11272-11281, 2021, DOI: 10.1609/aaai.v35i13.17344.

[6] P. Shaw, “Using constraint programming and local search methods

to solve vehicle routing problems,” International Conference on

Principles and Practice of Constraint Programming, pp. 417-431,

1998, DOI: 10.1007/3-540-49481-2_30.

[7] M. Phillips and M. Likhachev, “SIPP: Safe interval path planning

for dynamic environments,” 2011 IEEE International Conference

on Robotics and Automation, Shanghai, China, pp. 5628-5635,

2011, DOI: 10.1109/ICRA.2011.5980306.

[8] D. Silver, “Cooperative pathfinding,” AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment, vol. 1, no. 1,

pp. 117-122, 2005, DOI: 10.1609/aiide.v1i1.18726.

이 원 종

2024 서강대학교 기계공학과(공학사)

2024~현재 서강대학교 인공지능학과 석사

과정

관심분야: Multi-agent path finding

심 준 열

2023 인하대학교 컴퓨터공학과(공학사)

2023~현재 서강대학교 전자공학과 석사과정

관심분야: Multi-agent path finding

남 창 주

2009 고려대학교 전기전자전파공학부

(공학사)

2011 고려대학교 전기전자전파공학과(공학

석사)

2016 Texas A&M University(공학박사)

2018~2021 한국과학기술연구원 지능로봇

연구단 선임연구원

2021~2022 인하대학교 정보통신공학과 조교수

2022~현재 서강대학교 전자공학과 조교수

관심분야: Multi-robot systems, robotic manipulation, multi-robot

navigation

	Puzzle Heuristics: Efficient Lifelong Multi-Agent Pathfinding Algorithm for Large-scale Challenging Environments
	Abstract
	1. Introduction
	2. Problem Definition
	3. Method
	4. Experiments
	5. Conclusion
	References

