
1. Introduction

Multi-agent Pathfinding (MAPF) is the problem that finds 

collision-free paths for multiple agents from their start locations 

to their goal locations while optimizing the sum of total path 

lengths or the time taken for all tasks to complete[1]. It has 

numerous applications in various domains, such as logistics, 

aircraft, and urban traffic systems. In many such applications, the 

agents are tasked to visit multiple destinations consecutively.

Lifelong MAPF[2] is an extended version of the MAPF problem. 

In contrast to the canonical form of MAPF, where each agent has 

only one task and remains at its goal location, lifelong MAPF 

requires agents to generate paths to their respective new goal 

locations after reaching their current goals. The challenges lie in 

the fact that the next goals are not known to the agents befo-

rehand and the time that the agents finish their current tasks are 

not synchronized. Thus, it is paramount to have an efficient 

method that can find collision-free paths promptly for a dyna-

mically varying task set given a limited time budget.

The League of Robot Runners[3] is a competition to tackle the 

lifelong MAPF in challenging environments in terms of the com-

plexity of the environments as well as the scale of the agent team. 

Our team AIRLAB (ranked 8th) developed a method employing 

one of the state-of-the-art algorithms MAPF-LNS2[4] and Rolling 

Horizon Collision Resolution (RHCR) framework[5] as the MAPF 

solver. To enhance this approach, we develop Puzzle Heuristics 

that generates a compact heuristic table to reduce memory con-

sumption and computation, and successfully integrated it with 

these existing methods.
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2. Problem Definition

Our goal is to solve the lifelong MAPF instances presented in 

the League of Robot Runners competition. Therefore, the problem 

definition is dictated by the goal and rules of the competition.

A team of  agents  ⋯ perform errands (i.e., 

tasks) that appear in an online manner in a deterministic and a 

fully observable environment. The environment is represented 

by a grid map ( , ) where  is the set of vertices (repre-

senting grid cells) and  is the set of edges representing the 

adjacency of the cells (i.e.,  is a 4-connected graph). The agents 

operate on discrete time steps, denoted as t = 0, 1, 2, ..., τ where 

a constant τ is the final time step of an instance. At each time 

step, each agent can perform one of the four actions: move 

forward, rotate left or right 90 degrees, or wait.

The position 

∈ is the position of agent   on the grid map 

at time step . Let 
 


⋯

 be a path of agent   

from to   that the agent plans to move. Along the path, an 

agent must avoid conflicts with other agents. Two types of 

conflicts are defined: (ⅰ) the vertex conflict, where more than 

one agent moves to the same position, and (ⅱ) the edge conflict, 

where two agents swap their positions simultaneously. Specifically, 

a vertex conflict occurs at  if ∃ such that ≠ and 
 

. 

And edge conflict occurs at  if ∃ such that ≠, 
 

 

and 
 

. An errand is located on a position in the map. It 

can be completed only if the agent assigned to it arrives at the 

position of the errand. An agent becomes to know the next errand 

only after it finishes the current one.

Given the assumptions and definitions, the objective of the 

lifelong MAPF is to maximize the number of errands to be 

completed by  within   ⋯τ.

3. Method

By integrating MAPF-LNS2, RHCR, and Puzzle Heuristics, 

our method can handle large-scale lifelong MAPF instances in 

challenging environments. [Fig. 1] represents an overview of our 

algorithm procedure.

We provide a detailed description of each component and how 

they contribute to the overall effectiveness and efficiency of our 

solution method.

3.1 Puzzle Heuristics

The shortest distance between a pair of cells is frequently 

queried in an MAPF instance. In a fast-paced situation where the 

[Fig. 1] Illustration of the process of the MAPF-LNS2 and RHCR for Lifelong Multi-Agent Pathfinding (MAPF). Starting from the 

input MAPF instance, the solver plans   steps, which is the window size representing the time horizon for conflict resolutions, and 

generates an action sequence. After each action is simulated, the system replans after  steps, where  is the replanning period 

indicating the frequency of replanning. This windowed approach represents the RHCR method. The diagram shows the initial state, 

intermediate steps, and the continuous loop of planning and replanning to achieve collision-free paths for agents in a grid map. The 

circles represent the positions of the robots, while the triangles indicate their target positions
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quick online computation of paths is necessary, it is a common 

approach to precalculate the distances of all pairs. However, as 

the size of the map grows, the memory required to store the 

(Manhattan) distances increases significantly. A naïve method 

has the space complexity    for a grid map with N cells. 

This is particularly problematic in the competition since the 

memory size allocated to our method is limited. If we reduce 

memory usage by storing only part of the distances, some of the 

computation time needed to resolve inter-agent conflicts at 

runtime needs to be allocated to calculate the distances. There-

fore, the quality of the solution should be compromised to 

balance the trade-off between storage space and computational 

overhead.

The core idea of Puzzle Heuristics is to divide the grid map 

into areas such that each area contains contiguous cells within a 

depth  in a tree search from its central cell called the pivot point. 

The algorithm begins by selecting the lowest indexed cell (the 

index increments from top to bottom and left to right like the 

pixel coordinates) in the grid map as the first pivot point. Using 

Breadth-First Search (BFS), the area expands over non-obstacle 

cells from the pivot point, ensuring that the frontier of the BFS 

does not exceed a depth of .

Cells within the area are labeled with the same unique puzzle 

index. The process selects the next unlabeled cell with the lowest 

index as the new pivot point to repeat the area expansion. This 

procedure iterates until all cells in the grid map are labeled. The 

same-colored neighboring cells shown in the map of [Fig. 2] 

belong to the same area.

Once all cells are formed into areas, the shortest distances 

between all pairs of areas (i.e., pivot points) are calculated and 

stored in the heuristic table. By storing only the distances bet-

ween pivot points instead of all cells, we could meet the memory 

constraint. When the distance between two cells is queried, the 

heuristic value in the table effectively approximates the actual 

distance.

The number of cells in an area can reach up to  so 

at most  cells can be represented by a single value. 

As a result, the size of the heuristic table using Puzzle Heuristics 

could be reduced to , leading to significant 

memory savings compared to the naïve approach.

3.2 MAPF-LNS2

MAPF-LNS2 is one of the state-of-the-art algorithms for 

solving large MAPF instances by leveraging the powerful meta- 

heuristic technique Large Neighborhood Search[6]. A key advantage 

of MAPF-LNS2 is its ability to start from any of feasible or 

infeasible initial solutions. The algorithm iteratively selects a 

subset of agents using a neighborhood selection method. The 

method destroys the current paths of agents and repairs them 

using an efficient single-agent path planner that minimizes the 

number of collisions. If the repaired solution reduces the number 

of collisions, the new paths replace the old ones. This destroy- 

and-repair procedure continues until a stopping criterion is 

satisfied.

To achieve high efficiency, MAPF-LNS2 employs Safe Interval 

Path Planning with Soft Constraints (SIPPS), a variant of the 

Safe Interval Path Planning algorithm[7] that can handle hard and 

soft constraints. Integrating SIPPS has shown significant impro-

vements of MAPF-LNS2. While MAPF-LNS2 can be used with 

many existing MAPF algorithms, we choose to use Prioritized 

Planning (PP)[8] which is simple to implement and fast.

3.3 RHCR

The RHCR is a framework for solving the lifelong MAPF by 

decomposing an instance into a sequence of Windowed MAPF 

instances. RHCR utilizes two user-specified parameters: the time 

horizon   and the replanning period . The time horizon   

specifies the time window such that the MAPF solver must 

resolve conflicts within the next   steps (i.e., windowed MAPF 

solver). The replanning period  determines the frequency of the 

solver to replan paths. To avoid collisions,   should be larger 

than or equal to . The values of these parameters are critical for 

[Fig. 2] An example result of the Puzzle Heuristics method for 

generating a compact heuristic table. The same-colored neigh-

boring cells belong to the same area
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the performance of RHCR. Too small values of   would lead to 

deadlocks whereas too large values could result in inefficient 

solutions and increased computation time.

3.4 Greedy Randomized Search

Although MAPF-LNS2 and RHCR can solve large instances 

quickly, they would lead to deadlocks (i.e., no solution found) as 

PP is not proven to be complete.

Consider a scenario where   and  face each other at t and 

attempt to move forward. Here   has a higher priority. During 

the planning phase,   plans its path 
 while ignoring the 

presence of  as  has a lower priority. As a result, the planned 

path of   goes through the current location of  at  (i.e., 


 

). Given this path 
,  begins to plan 

.

In this situation, all possible actions for  at  result in 

conflicts because 
 passes through 

 in any case. Spe-

cific-ally, if  chooses to move forward, then an edge conflict 

occurs (i.e., 
 

 
 or 

 
 

), respectively). 

Thus,  cannot find a conflict-free action at . [Fig. 3] 

illustrates the three conflict situations incurring deadlocks.

We develop a greedy randomized search that combines gree-

diness and randomness to deal with deadlocks. We probabi-

listically multiply the number of edge collisions and vertex 

collisions by a factor of two. By doing so, our method could have 

an opportunity to explore alternative paths rather than relying on 

routes determined by the heuristic values. This simple yet effective 

approach enables the algorithm to explore a broader range of 

possibilities and escape from deadlocks. In our experiments, the 

version with the greedy randomized search recorded of 31 times 

higher number of errands than the version without the greedy 

randomized search.

4. Experiments

We evaluate our method in five environments provided by the 

competition: Sortation, Warehouse, Game, City, and Random 

map, as shown in [Fig. 4]. Each instance has predetermined 

agent-task pairs. We vary the number of agents from 50 to 3000 

agents. The evaluation metric is the total number of errands 

completed in 5,000 seconds. The test system is with AMD Ryzen 

[Fig. 3] An illustration of deadlock situations where   and 

face each other and attempt to move forward as shown in the 

grid map in the left. Blue () has a higher priority so plans 


which passes through the current position of  at . If 

moves forward, an edge conflict occurs. If  chooses to rotate 

or wait, a vertex conflict occurs

[Fig. 4] The test environments in the competition. White cells 

represent spaces that robots can occupy, while black cells 

indicate the obstacles that robots cannot occupy. From the top 

and left, (1) Random, (2) City, and (3) Game, (4) Warehouse, 

and (5) Sortation maps

[Fig. 5] The number of completed errands by the proposed 

method in five challenging environments: Sortation, Warehouse,

Game, City, and Random, with the number of agents ranging 

from 50 to 3000
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5800X 3.8 GHz CPU and 32G RAM. The source code is written 

in C++17.

As shown in [Fig. 5], our method effectively solves instances 

in the random map environment up to 200 agents. 

In other environments, the solution quality remains reasona-

ble for instances with up to 1,200 agents but declines as the 

number of agents increases.

The ability of MAPF-LNS2 and RHCR to solve large instances 

allows our algorithm to handle scenarios with a significantly 

large number of agents. The Puzzle Heuristics plays a crucial 

role in reducing the memory consumption and computation time 

for large-sized maps like Sortation, Warehouse, and Game. In the 

greedy randomized search allows us to escape deadlocks effecti-

vely even in dense environments like Sortation, Warehouse, and 

Random.

The algorithm struggles to find individual paths of all agents 

within the time budget, particularly with a large number of 

agents owing to the characteristics of PP, which plans paths 

sequentially. Since higher-rank agents are considered fixed obs-

tacles to lower-rank agents, the feasible positions become scarce.

In the context of discussing the impact of the  value on the 

performance of our method, we analyzed how varying  affects 

both the number of completed errands and the associated file size 

in Small Warehouse instance. [Fig. 6] illustrates these effects. As 

depicted, increasing the  value from 0 to 5 leads to a notable 

pattern: the number of completed errands rises initially, peaking 

at  = 2, before declining as  continues to increase. This 

indicates the best  value for maximizing the number of errands 

completed. Concurrently, the file size decreases as  increases, 

suggesting that higher  values lead to more efficient memory 

usage. This trade-off between errand completion and file size is 

critical for optimizing the performance of our method in various 

environments. 

In [Fig. 7], we observe a trade-off in choosing the value of  , 

which is the planning horizon   in RHCR. A low value of   

leads to efficient planning but could cause deadlocks because 

agents may not be able to plan far enough ahead to avoid 

conflicts. If we choose a high value, the ability to avoid dea-

dlocks is improved. Balancing between these two cases is critical 

for the performance of algorithm.

5. Conclusion

In this paper, we presented a novel approach for solving the 

challenging lifelong MAPF problem in the context of the League 

of Robot Runners competition. Our method combines three key 

techniques: Puzzle Heuristics, MAPF-LNS2, and RHCR. Addi-

tionally, we introduced a greedy randomized search to escape 

from deadlock. Experimental results demonstrated the effectiveness 

of our approach in various environments, particularly in random 

maps with a moderate number of agents. Through participation 

in the competition, we found our future directions that include 

improving the scalability of the method and implementing 

methods to avoid deadlock situations.
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