
1. Introduction

It is estimated that by 2050, there will be 700 million people 

affected by hearing impairments by 2050[1]. Unfortunately, 

existing hearing aids do not provide accurate real time 

transcriptions in noisy real-world environments, nor can they 

translate sign interpreters. To help further the development of 

future hearing aids, we propose researching how current lip- 

reading models can be applied to signers in understanding and 

translating mouth movements into words. 

In the domain of sign language, hand gestures are often 

thought of as the primary mode of communication, yet an aspect 

frequently overlooked is the integration of mouth movements by 

signers. Mouth movements, or “mouth morphemes,” constitute 

an integral component of sign languages, helping communicate 

intonation, emotional emphasis and reinforcing the hand signs 

meaning. This provides a plausible avenue for lip-reading to be 

used as a tool to help understand and translate sign-language to a 

non-signer.

Because of this potential avenue, this paper will explore how 

the potential of lip-reading can be applied to a sign language 

recognition scenario. This paper’s main contribution is to 

research the current lip-reading technology and determine how 

this may be applied to assist the recognition of sign-language. 

This research will help lip motion generation of social robots that 

communicate with humans. 
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We describe the current the current datasets available with the 

benefits and consequences of using each dataset in Section 2. 

This paper presents the details of current lip-reading machine 

learning models within Section 3, including the preprocessing of 

information, network architectures with training and testing 

procedures. In section 4, we will discuss the results of applying 

lip-reading models to a general setting i.e., live camera feed, and 

how these consequences should be addressed to come to a useful 

solution to assist the hearing impaired. In Section 5, we will 

discuss possible improvements for developing our lip-reading 

model to help understand sign language in a real-world use case.

2. Related Works

Signers express gestures with hand motions, but also facial 

expressions including lip movement for the communication 

among them. But current sign understanding research focuses on 

hands and body gesture recognition rather than facial expression. 

We are developing a sign interpreter robot that interprets signs 

with nuance of signers to non-signers who cannot understand 

signs. Here we should generate lip motions with synchronization 

and lip reading research can give a clue to generate lip motions. 

Lip-reading is an active research area with many existing 

approach’s utilizing both traditional computer vison and machine 

learning based approaches. Before considering the technical 

aspects of designing a lip-reading model, it is important to 

understand the nuances in the phonetic expression of the English 

language. Additionally, human factors also need to be accounted 

for in the creation of these models.

2.1 Language Factors

Language factors which contribute to these issues are 

phonemes and homophones as discussed in [2]. Phonemes are 

letters which are visually identical such as ‘p’, ‘b’, and ‘m’. 

Homophones are words which are visually identical such as 

‘pat’, ‘bat’, ‘mat’. Having letters and words which are visually 

identical cause issues for lip-reading as there is no way to 

distinguish these letters or words based purely on visual 

information. This can be a difficult issue to resolve, one potential 

solution is to take the wider sentence being spoken into context 

and have a library which can help deduce the most likely word to 

fill the spot of the homophone compared to using a word-by- 

word basis for classifying the words being spoken. 

An example of this solution is the sentence “I would like to pat 

the dog”, if this sentence were to be classified by a lip-reading 

model, it would be down to random chance of pat or one of the 

other homophones to be classified instead. But by taking the 

context of the sentence into consideration, the model will have a 

better chance of determining the correct homophone to place in 

the sentence. Another less impactful issue are plurals, since they 

are almost identical to the base word except for the letter ‘s’, 

there is potential of missing the last part of the word being 

spoken and it classifies the word as the non-plural version, i.e., 

benefit instead of benefits.

2.2 Human Factors

The other type of factors which can change how a lipreading 

model would classify words are human factors. The accent in 

which someone has can change how their mouth moves to say the 

same word. If the dataset was trained on British English speakers 

and you were to give it someone who’s native language is French, 

the way they pronounce English words can differ compared to the 

British, leading to potential miss-classification of the model. 

The speed in which someone speaks can affect the classi-

fication rate of a model as if you give a model input data of 

someone speaking significantly faster than the data in which it 

was trained on, the rate of change in the mouth movements 

differ, resulting in the same words being miss-classified. Furthe-

rmore, the facial structure, skin tone, tattoos or other visual 

variations outside the training data distribution in the mouth 

region may lower the accuracy of lip-reading models.

2.3 Existing Datasets

Behind any strongly performing machine learning model, is a 

high quality, diverse and large dataset in which the models can 

train and test on, as discussed in [2], there are many datasets for 

lip-reading training, however, existing datasets have size and 

diversity limitations them which reduces their generalization 

capabilities. One such dataset is the GRID dataset[3]. GRID 

follows a specific sentence structure, with a limited number of 

words or numbers which can be spoken, in the categories com-

mand, color preposition, letter digit and adverb. Each speaker 

repeats the same predetermined sentence with a vocabulary size 

consisting of 51 different words. This leads to the input training 

data to be repetitive and lacking diversity, thus attempting to use 
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a model trained on the GRID dataset in the wild results in poor 

accuracy, as real-world people do not speak in that exact 

structure. Furthermore, this imposes significant constraints on 

real world users, limiting the range of sentences they can 

articulate, given the restricted vocabulary comprising only 51 

words detectable by the model.

To attempt to bypass the generality problem researchers from 

Oxford[2] created a new dataset named Lipreading in the wild 

(LRW) which contains 500 different words with 1000 utterances 

of each word and each utterance is 1.16 seconds in length 

containing exactly 29 frames. There are variations on this dataset 

such as Lipreading Sentences in the wild (LRS) and LRS2 

(updated version), however, we will be focusing on the LRW 

dataset. Each utterance was taken from snippets of BBC TV 

broadcasts. Compared to other datasets, it has over 10 times the 

number of classes and utterances. Having a large dataset 

improves the training and testing accuracy as the more 

information there is for a model to train on, the greater variations 

the model will be able to detect. The LRW dataset provides a 

promising solution to address the issue of poor diversity in 

lip-reading datasets. 

3. Lip Reading System

3.1 Overall System

[Fig. 1] shows the overall System diagram of lip reading 

system. Our objective is to develop a system capable of capturing 

lip information from individuals speaking via RGB video 

recording. This captured lip data will then be fed into a 

lipreading machine learning model for the purpose of word 

classification, ultimately predicting the spoken words. The 

models we test are discussed further down the paper in Section 

3.3, however, these models are only word level classification 

models and not capable of sentence level translation. We will 

evaluate these existing models’ performance as an indicator 

of their suitability to be adapted into a lip-reading sentence 

translation tool.

There are many model architectures previously utilized for lip 

reading. VGG-M models were used as a backbone to the in [2]. 

Others approaches use ResNet-18 as their backbone[4]. Models 

can also take advantage of long short-term memory (LSTM)[5] to 

enhance temporal feature understanding. Networks designed 

specifically for video understanding, such as Multi-Stage- 

Temporal Convolution Network (MSTCN)[4], incorporate tem-

poral features directly within the backbone.

Most existing approaches to lip reading utilize models which 

incorporate some type of temporal mechanism such as LSTM or 

MS-TCN. The ability to process multi-frame features helps 

capture important motions of the lips across time, allowing the 

model to understand both temporal and spatial features coherently.

3.2 Dataset

As discussed in Section 2.3, there are various lip-reading 

datasets which are publicly available, therefore we need to 

determine which dataset(s) fit our desired functionality of being 

diverse, large-scale, and word level rather than sentence level. 

Out of the eight datasets considered, only the LRW and GRID 

datasets are word level datasets. Other datasets are labeled and 

organized by alphabetic letters, digits, or entire sentences. 

Since the input data for the GRID dataset is constrained to a 

certain sentence structure, mentioned in Section 2.3, this does not 

provide the generality we need, since we want the speaker to be 

able to speak any word in the vocabulary in any order. This 

leaves LRW dataset as the most suitable dataset in terms of 

diversity and suitability to our use case.

The LRW dataset also possesses the desirable quality of being 

a large-scaled dataset, comprising 500 different words with 1000 

utterances each spoken by hundreds of speakers, totaling 

500,000 utterances. This is the second largest dataset, following 

the MV-LRS dataset which has over 5,000,000 utterances. Due 

to LRW being a large-scale dataset, it shows allow the models 

trained upon it to be capable of generalizing to real world test 

cases.

Based on the qualitative evaluation of existing lip-reading 

datasets, we will be using the LRW dataset for evaluating, com-

paring and testing different models. 

[Fig. 1] Overall System diagram for desired system
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3.3 Models for Lip Reading

We review the reported accuracy of various models in [Table 

1] and select two promising models tested on the LRW dataset. 

One model architecture we consider is [2], refer to [Fig. 2]. This 

model was built on top of the VGG-M architecture which 

incorporates a temporal component in the form of Multiple 

Towers (MT). The first step is to separately pass each input 

frame into a tower of the MT architecture. The 25 towers each 

process one frame from the video sequence, with every tower 

sharing the same weight. Each output feature is then con-

catenated channel wise with other towers output features. The 

concatenated features are then passed into a pooling layer and 

then a convolution layer, creating temporally fused features. 

Next, a VGG-M backbone is utilized to perform spatial 

computation on the temporal features. Due to the architecture 

being mostly built upon the 2D convolution model VGG-M, both 

training and inference speed is higher than models designed 

purely based on the computationally expensive 3D convolution. 

This can prove beneficial as we want to apply our system to a live 

setting, and if the model used cannot classify words at a 

reasonable latency, it would cause delays which could provide a 

poor user experience. We need to ensure that we achieve a 

balance of inference latency and prediction accuracy. 

Trading off speed for accuracy, we investigate[4] which 

proposed the MS-TCN as shown in [Fig. 3]. MS-TCN utilizes 

many 3D convolutional layers organized in a multistage design. 

Due to the heavy computational demand of 3D convolutional 

layers, training and more importantly inference latency will be 

greatly increased compared to [2]. However, MS-TCN also 

reports higher test accuracy. The improvement in accuracy will 

need to be evaluated against the increase in inference time, to 

determine whether the tradeoff is worthwhile.

3.4 Data Augmentation

Data augmentation is another preprocessing step which can 

[Table 1] The best accuracies grouped by dataset

Dataset Paper using the dataset Accuracy

LRW (Oxford DS)
[2]

S. Lai
[2] 92.30%

J. S. Chung
[12] 76.20%

P. Ma
[13] 88.50%

B. Martinez
[4] 85.30%

AVICAR
[6]

Y. Fu
[14] 37.90%

AVLetter
[7]

G. Zhao
[9] 43.5%

T. Ozcan
[15] 52.31%

A. Krizheysky
[16] 54.62%

C. Szegedy
[17] 52.31%

CUAVE
[8]

G. Papandreou
[18] 83.00%

M. Wand
[5] 79.6%

Y. Lan
[19] 65.0%

Y. M. Assael
[20] 95.20%

J. S. Chung
[12] 97.00%

OuluVS1
[9]

Y. Pei
[21] 89.7%

Z. Zhou
[22] 85.6%

S. Petridis
[23] 81.80%

OuluVS2
[10]

Z. Zhou
[22] 73.50%

MV-LRS
[11]

J. S. Chung
[11] 88.9%

T. Saitoh
[24] 80.30%

D. Lee
[25] 82.20%

Z. Zhou
[22] 70.00%

[Fig. 2] MT based model architecture

[Fig. 3] MS-TCN based model architecture
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increase the model’s accuracy by transforming the existing 

dataset in various ways to create greater variation in the dataset. 

This can increase the generalization capabilities of the model 

through regularization. This is because it prevents the model 

from overfitting on irrelevant features of the training dataset. 

Common data augmentations include randomly adjusting bright-

ness, hue, saturation, cropping, resizing, flipping and rotating the 

image. 

In the case of lip-reading, most augmentations such as flip-

ping the image horizontally and cropping the image slightly are 

viable options, as they both improve the variation of the dataset 

without producing corrupt training data with a label mismatch. 

However, an augmentation unsuitable for lipreading would be 

flipping the image vertically, as this would turn the lips upside 

down, reversing the direction of the lip movements and thus 

creating corrupt label mismatched data.

Incorporating this corrupt training data would decrease the 

accuracy of the model. Data augmentation can greatly benefit the 

model’s accuracy, but only if careful considerations are made to 

avoid creating corrupt training samples, such as by avoiding 

unsuitable augmentations. We only adopt horizontal flipping and 

cropping.

3.5 Preprocessing 

Having a well-chosen architecture is important for the 

performance of a model, but without the properly formatted 

training data, even the optimal architecture may under perform. 

This is why thoughtfully preprocessing the input data as well as 

performing data augmentation on the data is crucial. Preproce-

ssing can take on many forms depending on the model archi-

tecture and other considerations. In the case of [4], a series of 

common operations are performed on the videos in the LRW 

dataset to enhance the resolution of the mouth region. Firstly, the 

faces in frame must be detected using a face detection model and 

then aligned so that the faces are in the center of the frame. Then 

a 96x96 pixel image is cropped around the mouth as this is the 

Region of Interest (ROI). The image is then converted to grey 

scale.

These preprocessing steps are important as it allows the model 

to focus on the critical features (mouth region) of the data. Due to 

hardware memory constraints, temporal neural network models 

usually operate at low spatial resolutions. Without cropping, the 

mouth region would only occupy a small region of the input, and 

hence be represented by a small number of pixels. This could 

lead to shallow receptive field problems. Converting images to 

grey scale has advantages and disadvantages. Greyscale reduces 

the computational demands in the first convolution layer which 

is computationally demanding due to being high in spatial 

resolution. Greyscale conversion can also be considered a type of 

regularization, and it removes the variable of lip hue due to 

things such as lighting, lipstick or skin tone. However, grayscale 

conversion also removes information which could possibly be 

useful.

We chose to adopt the preprocessing steps described in [4], 

including the mouth crop and greyscale conversion. It is notable 

that the models take in a different number of temporal frames, 

which is the only key difference in the preprocessing steps.

4. Experimental Results

The primary goal of the experimentation is to determine 

whether the MT based model architecture performs better than 

the MS-TCN based model architecture in a fair comparison. We 

will be evaluating the models based on three main components, 

top-1 percentage, top-10 percentage, and processing time. By 

using these quantitative metrics, we can assess the word 

classification accuracies via the top-1 and top-10 percentages. 

The top-1 percentage will give us a clear indication if the model 

has correctly classified the word. The top-10 percentage will 

determine if the model’s prediction was close or completely 

wrong. The processing time will notify us whether the model is 

able to perform inference at a responsive rate. This information 

will help indicate whether the model could feasibly be applied to 

a real-world application and judge the accuracy verses inference 

time trade off.

4.1 Test Results with LRW Dataset 

Although the results of LRW are reported in ablation studies 

in various other papers, the testing and preprocessing meth-

odologies could be different, causing inconsistent results. We 

conduct a fair test of between the MT based model and MS-TCV 

by utilizing the same dataset, preprocessing and augmentation 

methodologies. After training and validating the two models, we 

found that the MT based model architecture performed like the 

reported accuracy of 65.4% of word accuracy rate with a top 

10 accuracy rate of 92.3%, and the MS-TCN based model 
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architecture also roughly matched the reported top 1 word 

accuracy rate of 85.3%. The testing script of MS-TCN does not 

report top 10 accuracy. MS-TCN achieves impressive accuracy 

on the LRW dataset, however, the test and train dataset although 

independent, are taken from the same data source modality.

4.2 Test Results from Live Streaming

To evaluate the real-world performance, which may have 

differences to the data in LRW, we used a webcam to perform 

live testing. We sampled the required number of frames for the 

respective model and followed the preprocessing steps before 

passing it through the model. The result would be shown on the 

live camera feed as well as printing the top 10 results in the 

terminal. We kept track of what words we were going to say and 

recorded if the model classified the words correctly. We chose 50 

words randomly times from the LRW dataset to test against the 

models. Each word was repeated 3 times.

[Fig. 4] shows an example frame for “Society” from the live 

camera test. [Table 2] shows the test results with LRW dataset, 

and [Table 3] shows the test results from the live camera test. 

Testing the MT based model architecture, we found that on 

average between the three separate tests, the word accuracy rate 

was 15% and the top 10-word accuracy was 42%. Performing the 

same testing procedure on the MS-TCN, it produced an average 

word accuracy rate of 26% and a top 10-word accuracy rate of 

62%. These live demonstration results show a significant drop in 

accuracy compared to the initial training and testing accuracies 

for both models. 

There are many potential reasons for this drop in accuracy. 

One such issue could be the mismatch of clip length and sample 

rate in the live video compared to the LRW dataset. Since the 

LRW dataset consists of pre-recorded clips from BBC TV, they 

all have a consistent start and end point of frame 1 to frame 29, it 

is difficult to know exactly when the start of the new 29 frame 

cycle is for the live testing. When testing with a sliding window 

approach, we could have started saying a word on the 4th frame 

in the cycle instead of the 1st frame leading to the first three 

frames to be the end of another word being spoken. Another 

possible reason for the lower accuracy is different accents and 

speaking patterns, as LRW was collected from the BBC with 

mostly British speakers, whilst the test was performed on a New 

Zealand English speaker.

Another issue mentioned earlier is the variability of speaking 

speed. Since the speakers are TV presenters, they all follow a 

similar speaking speed and pattern, which means if there is a 

difference in how we spoke compared to the presenters, it would 

affect the accuracy during the live test. While doing the live test, 

we tried to match their speech speed and pattern as close as we 

could, but we cannot guarantee that it was perfect, which 

potentially led to some misinformation being given to the 

models. Furthermore, real world users cannot be expected to try 

match British television presenters.

5. Discussions

Initially, our objective was to replicate the state-of-the art 

lip-reading model and integrate it into a medium, such as a robot. 

We are developing different types of service robots as shown in 

[Fig. 5], for different purposes, i.e. interpreters, receptionists, 

guides, working at different places, i.e. restaurants, government 

offices, museums, and these robots should be able to commu-

nicate with humans[26,27]. Here, we need lip-synchronization and 

this lip-reading model and method can be adopted for our next 

step. Robots capture live camera feed of an individual mouthing 

[Fig. 4] Example frame taken from live camera testing. 

Predicted word displayed on top left in blue and green rectangle 

showing the ROI around the lips

[Table 2] Accuracies of models trained on LRW dataset

Model Top-1 Top-10

MT Based Architecture 65.4% 92.3%

MS-TCN Based Architecture 85.3% -

[Table 3] Accuracies of models during the live testing

Model Process Time Top-1 Top-10

MT Based Architecture 1.22 s 15% 42%

MS-TCN Based Architecture 1.85 s 26% 62%
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words, then provide the translated output to the user by audibly 

repeating the words, which can be trained for each robot’s lip 

movement. 

To better achieve our initial objective considering the 

limitations found in testing, we propose refining the scope to a 

narrower scenario. Instead of a general setting, we aim to 

develop a limited vocabulary lip-reading model tailored for 

administrative assistance within medical environments. This 

entails curating a custom dataset comprising 100 words: 50 

common conversational terms (‘the’, ‘and’, ‘that’, ‘to’, ‘I’, 

‘was’, ‘by’, ‘not’, etc.) and 50 prevalent medical administrative 

terms (‘patient’, ‘appointment’, ‘nurse’, ‘doctor’, ‘waiting’, ‘area’, 

‘emergency’, etc.). Constraining the dataset to this specific 

domain allows for a greater number of training samples per class, 

and a lower chance of errors by reducing the n umber of possible 

words. This should allow for real-world accuracy, which is 

acceptably high for users. We chose MS-TCN model as the 

preferred model for our use case, despite its longer processing 

time compared to the MT-based architecture, as it significantly 

outperforms the latter in terms of real-world accuracy. One 

method to improve real world accuracy is by prompting the user 

to start speaking after a beep or visual signal, ensuring the speech 

starts closer to the frame sampling window.

These refinements aim to enhance model accuracy during live 

testing by mitigating previous issues encountered. These 

suggestions should allow the solution to be a more viable tool for 

sign language understanding, addressing the needs of the hearing 

impaired more comprehensively. This research output will be 

used for our next research to enhance the accuracy of sign 

understanding, which is a novel approach. We will develop a 

receptionist robot that understands human signs, so robots can 

service signers as well. We target public offices such as 

government offices and hospital reception. 

6. Conclusions

Lip-reading for sign language understanding still faces several 

challenges to overcome, which are products of the randomness 

and variations in real speakers. There are phonemes and 

homophones which are visually identical letters and words 

respectively. Human factors such as accent, and speed of speech 

all contribute to making lip-reading difficult. The current lip- 

reading datasets that are available are not as broad or diverse 

compared to other large datasets such as datasets MNSIT or 

ImageNet. This makes it difficult to create a general solution as 

large-scale datasets are required to train models which generalize 

to real world testing.

Despite our ambition to create an all-purpose general lip-

reading model, we believe this is not feasible with the current 

datasets available. Future datasets will need a much larger 

vocabulary from a far greater diversity of sources. However, 

from the experimentation, we share insights on the performance 

of lip-reading model architectures and select MS-TCN as the 

best performing model. Because of limitations, we plan on 

constraining the problem domain to reduce the scope and 

difficulty by reducing the number of words which the model can 

classify. We suggest deploying the reduced scope model within a 

medical context to allow for satisfactory performance in 

understanding sign language, thus allowing hearing and speech 

impaired persons to benefit from being able to communicate in 

sign language.
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