
1. Introduction

Sign language is a visual language that conveys meaning 

through gestures, facial expressions, and body language. It is the 

first language of many deaf individuals and is used as a primary 

mode of communication in many deaf communities worldwide. 

However, automatic translation of sign language is a complex 

task requiring a deep understanding of natural language 

processing and computer vision. In its most basic form, Sign 

Language Recognition (SLR) is the task of classifying a gloss 

or an individual sign, such as the one in [Fig. 1] to their word 

meaning.

Over the years, there has been a massive interest in SLR 

within the computer vision community. Currently, most state-of- 

the-art models utilize the multi-stream model architecture, as 

shown in [Fig. 2], to extract features from different modalities. 

These modalities might include RGB, optical flow, depth, 

skeleton and sometimes, different crops of the signer, e.g., the 

hands and the face.

Aside from the modalities used, the only main difference 

between current state-of-the-art models is their choice of their 

backbones, i.e., the part of the model that works on the raw 

modality inputs. For the MSNN model in [Fig. 2], this is ST- 

GCN[1] for skeleton input and I3D[2] for all the other modalities. 

Backbones have often been chosen more so for their popu-

larity than their actual performance for SLR task as seen in [3], 

[4] and [5]. As a result, there is an opportunity to optimize such 

networks by selecting backbones that work best for SLR. 

Our contributions are as follows: 

․ We run extensive experiments on existing action recog-

nition models for RGB on three SLR datasets: WLASL100, 

AUTSL, and WLASL2000. We choose RGB as it is trivial 
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to adapt the models to other input types.

․ To better understand the current limitations of models on 

RGB, we select the best model and qualitatively analyze the 

glosses that it predicts wrong.

In Section 2 of this paper, we review existing sign language 

models and dataset and in Section 3, we discuss our experiments 

and their results. We conclude this paper in Section 4.

2. Related Works

2.1 Sign Language Recognition Research

Recent approaches for sign language recognition have entirely 

focused on using machine learning techniques to learn sign 

language patterns directly from the data. The main challenge 

with these approaches is in extending the existing computer 

vision model’s capabilities to being able to interpret video since 

static images are insufficient for many of the glosses used. Many 

action recognition models, including 3DCNN[7], I3D, R(2+1)d[8], 

and newer transformer-based approaches, i.e., TimeSFormer[9] 

have been proposed over the years for the broader action 

recognition task, which have not yet been benchmarked against 

each other on sign language recognition datasets.

2.2 Existing Datasets

Since sign language differs for each country, sign language 

recognition datasets developed over recent years have different 

signs for the same words. The goal of these datasets is to provide 

a benchmark for different models so that they can be used for the 

harder Continuous Sign Language Recognition (CSLR) task, 

which involves translating sign language to sentences. 

While some datasets e.g., ASSLLVD, DEVISIGN and WLASL 

boast high vocabulary sizes, they fall short on the number of 

samples per class as seen in [Table 1]. On the other hand, 

although datasets like CSL and AUTSL have much smaller 

vocabulary sizes, they have large numbers of samples per class, 

which generally allows the models trained on them to attain 

higher accuracies than the same models trained on their 

counterparts as seen in [Table 2]. With very few samples per 

class, the already difficult task of SLR becomes not only a 

problem of action recognition but also a problem of few-shot 

learning.

2.3 Models for Sign Language Recognition

All current state-of-the-art models exploit multimodal inputs 

to make their models output better predictions, as shown in 

[Table 2]. These multimodal inputs may include but are not 

limited to RGB, depth, optical flow, depth flow, HHA depth, 

skeleton, cropped hands, and cropped face. The concept behind 

this is to extract features from different modalities and combine 

them so that the classifier head has more information to work 

with. There is an accuracy-time trade-off with these models, as 

multimodal models tend to be more computationally intensive 

[Fig. 1] American gloss for ‘accident’[6]

[Fig. 2] Multi-Stream Neural Network (MSNN)[3]

[Table 1] Overview of existing large-scale SLR datasets, where 

a: the number of samples per class given is the mean number of 

samples per class, b: this dataset is not publicly available for use

Dataset

Sign Language Recognition Datasets

Language # of Signs
# of 

Samples

Samples 

per Classa
Ref.

ASLLVD American 2742 9794 3.6 [10]

DEVISIGNb Chinese 2000 24000 12 [11]

MSASL American 1000 25513 25.5 [12]

CSLb Chinese 500 125000 250 [13]

WLASL American 2000 21083 10.5 [6]

AUTSL Turkish 226 38336 169.6 [14]
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than their unimodal counterparts, making them slow for real- 

time predictions. 

3. Experiments

In this section, we run experiments on the different action 

recognition models to empirically evaluate their effectiveness in 

SLR.

First, we train the models on two different datasets: WLASL 

and AUTSL, using only the RGB modality. We select WLASL 

for its large vocabulary size and use two subsets: one with 100 

signs and another with full 2000 signs to test the performance of 

the models with different number of classes. In contrast, we 

choose AUTSL for its high number of training samples per sign 

and to test the robustness of the different models under dynamic 

backgrounds and settings, as shown in [Fig. 3].

We train each model three times, using different seeds on the 

training and validation splits of the dataset. For each run, we 

evaluate using the top-1 and top-5 accuracies for each model. 

The final evaluation uses the mean top-1 and top-5 accuracies 

from the three runs.

Due to time constraints, we use the stock model with the 

[Table 2] Current SLR model benchmarks on various datasets, where a: the number of samples per class given is the mean number of 

training samples per class

Dataset Sign Language Recognition Model

Name
Samples per 

Classa
Year Model Modality Accuracy (%) Ref.

WLASL100 17.8

2021 SignBERT RGB, Pose, HandCrop 83.30 Hu et al. 
[4]

2021 MSNN
RGB, Flow, Pose, 

HandCrop, FaceCrop
81.38 Maruyama et al. 

[3]

2022 I3D RGB 67.06 Kimsong et al. 
[15]

2020 I3D Pose RGB, Pose 65.89 Li et al. 
[16]

2022 SPOTER RGB, Pose 63.18 Bohacek & Hruz 
[17]

WLASL300 14.8

2021 SignBERT RGB, Pose, HandCrop 75.27 Hu et al. 
[4]

2021 MSNN
RGB, Flow, Pose,

HandCrop, FaceCrop
73.43 Maruyama et al. 

[3]

2022 SPOTER RGB 68.75 Bohacek & Hruz 
[17]

2020 I3D Pose RGB, Pose 56.14 Li et al. 
[16]

WLASL2000 9.1

2021 SAM-SLR-v2
RGB, Flow, Depth, Depth 

Flow, Depth HHA, Pose
59.39 Jiang et al. 

[5]

2021 SignBERT RGB, Pose, HandCrop 52.08 Hu et al. 
[4]

2021 MSNN
RGB, Flow, Pose,

HandCrop, FaceCrop
47.26 Maruyama et al. 

[3]

AUTSL
111

2021 SAM-SLR-v2

RGB, Flow, Depth, 

Depth Flow, 

Depth HHA, Pose

98.53 Jiang et al. 
[5]

2020 CNN+FPM+LSTM+Attention RGB, Depth 95.95 Ozge & Hacer 
[14]

2021 VTN-PF RGB, Pose, Flow 92.92 Mathieu et al. 
[18]

MSASL 21.5

2021 SignBERT RGB, Pose, HandCrop 89.96 Hu et al. 
[4]

2021 MSNN
RGB, Flow, Pose, 

HandCrop, FaceCrop
84.22 Maruyama et al. 

[3]

[Fig. 3] Sample frames from AUTSL (left)[6] and WLASL (right)[14]
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default data augments and hyperparameters available from 

MMAction2[19]. Each model is trained for 150 epochs or until the 

validation top-1 accuracy converges to a set value. For the 

evaluation phase, all models are tested on the WLASL100 

subset, but due to limited time, we only test the best-performing 

models on the larger datasets.

3.1 Quantitative Results

CSN outperforms all the other models for WLASL100 with a 

top-1 accuracy of 79.20% followed closely by TPN and TimeS-

former as seen in [Table 3]. 

Since WLASL100 has a relative low number of samples per 

class, we previously speculated that the transformer-based 

model, TimeSFormer did not have enough data to have adequate 

performance. However, even after evaluating against the large 

AUTSL dataset, we still find CSN and TPN outperforming TimeS-

Former by about 17% as seen in [Table 4].

In contrast to other action recognition datasets where trans-

formers achieve state-of-the-art results, SLR datasets often con-

tain low number of training samples per class, which benefits 

CNN designs due to their built-in inductive biases that trans-

former-based vision models lack.

Since both CSN and TPN performed at a similar level for 

AUTSL, as a ‘tiebreaker’ between CSN and TPN, we evaluate 

the two against the WLASL2000 dataset, which is a dataset 

to test models under many classes. This time, we find CSN 

achieving a large lead of 14.37% from TPN as seen in [Table 5]. 

Despite its high vocabulary size, the WLASL2000 dataset 

falls behind in the number of samples per class, with a mean of 

only 9.1 training samples per class. We infer from the results that 

TPN struggles from a low number of training samples and not the 

high number of training classes. This is evident from the results 

of WLASL100 where it achieves a lower accuracy than CSN and 

[Table 3] Model Performance against WLASL100, where *: the results shown are the accuracies from evaluating the model against the test data

Model Seed 0 Seed 1 Seed 2 Mean

Name Ref. Top-1* (%) Top-5* (%) Top-1* (%) Top-5* (%) Top-1* (%) Top-5* (%) Top-1* (%) Top-5* (%)

C3D [20] 50.77 79.45 48.45 79.46 49.22 79.84 49.48 79.58

TSN [21] 44.57 78.29 47.67 78.68 45.61 77.78 45.95 78.25

TSM [22] 55.81 86.82 55.81 87.6 55.81 86.05 55.81 86.82

TANet [23] 58.91 82.95 57.36 87.21 60.08 84.1 58.78 84.75

CSN [24] 77.91 93.02 79.84 93.02 79.84 93.02 79.20 93.02

TimeSformer [9] 62.4 84.88 61.63 84.11 61.24 84.11 61.76 84.37

R(2+1)d [8] 23.26 12.02 29.46 68.6 30.23 66.67 27.65 49.10

I3D [2] 60.77 60.08 60.85 60.08 57.93 57.75 59.85 59.30

TPN [25] 67.44 88.37 62.79 90.7 58.14 88.37 62.79 89.15

TIN [26] 56.98 85.27 53.1 82.95 37.21 72.48 49.10 80.23

[Table 4] Model Performance against AUTSL

Model Seed 0 Seed 1 Seed 2 Mean

Name Ref. Top-1* (%) Top-5* (%) Top-1* (%) Top-5* (%) Top-1* (%) Top-5* (%) Top-1* (%) Top-5* (%)

CSN [24] 90.25 98.72 93.32 99.36 89.01 98.72 90.86 98.93

TimeSFormer [9] 76.58 93.45 70.22 90.99 72.84 92.68 73.21 92.37

TPN [25] 89.82 98.93 89.23 98.34 89.54 98.56 89.53 98.61

[Table 5] Model Performance against WLASL2000

Model Seed 0 Seed 1 Seed 2 Mean

Name Ref. Top-1* (%) Top-5* (%) Top-1* (%) Top-5* (%) Top-1* (%) Top-5* (%) Top-1* (%) Top-5* (%)

CSN [24] 46.02 77.25 44.04 77.28 38.87 71.48 42.98 75.34

TPN [25] 30.64 65.72 28.45 62.28 26.75 59.22 28.61 62.41
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from the results of AUTSL where it achieves an accuracy about 

the same level as CSN while working with 126 more classes than 

the WLASL100.

Compared to other CNN-based models, CSN has a unique 

advantage in relation to the lower number of samples per class, 

prevalent in all sign language datasets. The channel separation in 

CSN factorizes the usual 3D convolution into channel and 

spatial-temporal components. This acts as a form of regulari-

zation as the channel interactions and spatial-temporal interac-

tions are separated to different parts of the network[24]. As a 

result, this makes CSNs inherently less prone to overfit to 

training data, allowing for a higher testing accuracy with lower 

number of samples, compared to its CNN counterparts. This is 

seen in [Fig. 4] where we compare the performance of CSN with 

I3D at different number of training samples per class. 

3.2 Qualitative Results

Since CSN attains an accuracy of 79.20%, which is only 4.1% 

behind the current state-of-the-art, SignBERT for WLASL100, 

we use this model to gain valuable insights in understanding the 

glosses it predicts wrong. Among these glosses, the gloss ‘cousin’ 

confuses the model the most into predicting the gloss, ‘computer’ 

as seen in [Fig. 5].

Both glosses are similar as they both have one hand making a 

‘C’ shape. The only difference is that for ‘computer’, another 

arm needs to be underneath the main arm as seen in [Fig. 6] while 

for ‘cousin’, the other arm can be resting. We speculate that this 

is due to a lack of skeletal understanding of the model as it misses 

the other arm’s position every time and predicts the ‘computer’ 

gloss instead during training. This is why models like SignBERT 

rely on the pose modality to being able to distinguish between 

glosses like these. 

In [Fig. 7], both glosses have the same arm motion, but the 

starting position is at the chin for ‘never’ while it being the nose 

for ‘who’. For glosses, ‘heavy’ and ‘lightweight’ in [Fig. 8], we 

find an interesting insight in understanding sign language. Both 

glosses have the same hand movement with the only dis-

tinguishing factor being their face. For ‘lightweight’, the facial 

emotion is neutral but for ‘heavy’, the facial emotion is of a 

gruntled one. It is highly likely that the model misses this 

difference due to this feature being lost with convolutions since 

the face is a very small part of the whole frame. Many multi-

modal models usually include a cropped face (and sometimes, 

also hands) as separate inputs such that these features don’t get 

lost with convolutions. 

It should also be noted that facial expressions don’t always 

have any meaning for most glosses. The gloss, ‘accident’ for 

[Fig. 4] Samples per class against accuracy for I3D and CSN

[Fig. 5] Heatmap showing the wrong predictions of CSN on 

WLASL100

[Fig. 6] Ground truth ‘cousin’ (top) against predicted ‘computer’ 

(bottom)[14]
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example in [Fig. 1], can have a positive or a negative connotation 

given the context. From a gloss standpoint, however, there can be 

no context. This raises an interesting issue with the current 

datasets as there is a need for a variety of facial emotions such 

that glosses where facial features are important, the model can 

have a clear indication of it.

4. Conclusions

In this paper, we run extensive experiments on various 

existing action recognition models to benchmark them against 

SLR datasets. Our findings include the best performing model, 

CSN, which achieves a high accuracy of 79.20% using RGB, that 

is only 4.1% behind the current state-of-the-art, SignBERT for 

WLASL100. We discuss the inherent drawbacks of using only 

one modality, the importance of facial and hand features, and 

how CSN has an inherent advantage over other models due to its 

built-in regularization for datasets with low number of training 

samples, which is common for sign language datasets.

To the best of our knowledge, CSN has not been used pre-

viously for SLR even though it has inherent advantages over 

other models. 

For future work, we recommend exploring combinations of 

multiple modalities to get more comprehensive insights for sign 

language understanding. We hope this research serves as a base-

line for future researchers and moving forward, we hope to see 

CSN being used as a strong backbone for multi-stream models 

to further improve the accuracy of word level sign language 

recognition.
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